The current electroencephalography study investigated the relationship between the motor and (language) comprehension systems by simultaneously measuring mu and N400 effects. Specifically, we examined whether the pattern of motor activation elicited by verbs depends on the larger sentential context. A robust N400 congruence effect confirmed the contextual manipulation of action plausibility, a form of semantic congruency. Importantly, this study showed that: (1) Action verbs elicited more mu power decrease than non-action verbs when sentences described plausible actions. Action verbs thus elicited more motor activation than non-action verbs. (2) In contrast, when sentences described implausible actions, mu activity was present but the difference between the verb types was not observed. The increased processing associated with a larger N400 thus coincided with mu activity in sentences describing implausible actions. Altogether, context-dependent motor activation appears to play a functional role in deriving context-sensitive meaning.
After fifty years of research there is still debate on the concept of auditory processing disorders (APD). We conducted a systematic review to examine the characteristics associated with APD. The purpose of this study is to decide whether APD can be regarded as a unique and identifiable clinical entity.
When an adult claims he cannot sleep without his teddy bear, people tend to react surprised. Language interpretation is, thus, influenced by social context, such as who the speaker is. The present study reveals inter-individual differences in brain reactivity to social aspects of language. Whereas women showed brain reactivity when stereotype-based inferences about a speaker conflicted with the content of the message, men did not. This sex difference in social information processing can be explained by a specific cognitive trait, one's ability to empathize. Individuals who empathize to a greater degree revealed larger N400 effects (as well as a larger increase in γ-band power) to socially relevant information. These results indicate that individuals with high-empathizing skills are able to rapidly integrate information about the speaker with the content of the message, as they make use of voice-based inferences about the speaker to process language in a top-down manner. Alternatively, individuals with lower empathizing skills did not use information about social stereotypes in implicit sentence comprehension, but rather took a more bottom-up approach to the processing of these social pragmatic sentences.
MULTIFILE
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.