Vertical and horizontal alignment within organizations are seen as prerequisites for meeting strategic objectives and indications of effective management. In the area of safety management, the concept of vertical alignment has been followed through the introduction of hierarchical structures and bidirectional communication, but horizontal alignment has been given little attention. The principal goal of this study was the assessment of horizontal alignment within an aviation organization with the use of data from safety investigations, audits and meetings in order to explore the extent to which (1) causal factors recorded in safety investigation reports comprised topics discussed by safety committees and focus areas of internal safety auditors, and (2) the agendas of safety committees include weak points revealed during safety audits. The study employed qualitative and quantitative analysis of data collected over a 6 years’ period at three organizational levels. The results suggested a low horizontal alignment across the three pairs of the corresponding safety management activities within each organizational level. The findings were attributed to the inadequacy of procedures and lack of a safety information database for consistently sharing safety information, cultural factors and lack of planning for the coordination of safety management activities. The current research comprises a contribution to the literature and practice and introduces a technique to assess the intra-alignment of safety management initiatives within various organizational levels. Future research is needed in order to investigate the association between horizontal alignment of safety management practices and safety performance.
Various tools for safety performance measurement have been introduced in order to fulfil the need for safety monitoring in organisations, which is tightly related to their overall performance and achievement of their business goals. Such tools include accident rates, benchmarking, safety culture and climate assessments, cost-effectiveness studies, etc. The current work reviews the most representative methods for safety performance evaluation that have been suggested and applied by a variety of organisations, safety authorities and agencies. This paper discusses several viewpoints of the applicability, feasibility and appropriateness of such tools, based on the viewpoints of managers and safety experts involved in a relevant research that was conducted in a large aviation organisation. The extensive literature cited, the discussion topics, along with the conclusions and recommendations derived, might be considered by any organisation that seeks a realistic safety performance assessment and establishment of effective measurement tools.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.