Background: Intravenous (IV) therapy using short peripheral IV catheters (PIVC) is commonplace with neonatal patients. However, this therapy is associated with high complication rates including the leakage of infused fluids from the vasculature into the surrounding tissues; a condition referred to as, peripheral IV infiltration/extravasation (PIVIE). Objective: The quality improvement project aimed to identify the prevalence of known risk factors for PIVIE in the neonatal intensive care unit (NICU) and explore the feasibility of using novel optical sensor technology to aid in earlier detection of PIVIE events. Methods: The plan, do, study, act (PDSA) model of quality improvement (QI) was used to provide a systematic framework to identify PIVIE risks and evaluate the potential utility of continuous PIVC monitoring using the ivWatch model 400® system. The site was provided with eight monitoring systems and consumables. Hospital staff were supported with theoretical education and bedside training about the system operations and best use practices. Results: In total 113 PIVIE's (graded II-IV) were recorded from 3476 PIVCs, representing an incidence of 3.25%. Lower birth weight and gestational age were statistically significant factors for increased risk of PIVIE (p = 0.004); all other known risk factors did not reach statistical significance. Piloting the ivWatch with 21 PIVCs using high-risk vesicant solutions over a total of 523.9 h (21.83 days) detected 11 PIVIEs (graded I-II). System sensitivity reached 100%; 11 out of 11 PIVIEs were detected by the ivWatch before clinician confirmation. Conclusions: Prevailing risk factors for PIVIE in the unit were comparable to those published. Continuous infusion site monitoring using the ivWatch suggests this technology offers the potential to detect PIVIE events earlier than relying on intermittent observation alone (i.e. the current standard of care). However, large-scale study with neonatal populations is required to ensure the technology is optimally configured to meet their needs.
LINK
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
DOCUMENT
Purpose People with dementia (PwD) often present Behavioral and Psychological Symptoms of Dementia, which include agitation, apathy, and wandering amongst others, also known as challenging behaviors (CBs). These CBs worsen the quality of life (QoL) of the PwD and are a major source/reason of (increased) caregiver burden. The intricate nature of the symptoms implies that there is no “one size fits all solution”, and necessitates tailored approaches for both PwDs and caregivers. To timely prevent these behaviors assistive technology can be utilized to guide caregivers by enabling remote monitoring of contextual, environmental, and behavioral parameters, and subsequently alarming nurses on early-stage behavioral changes prior to the presentation of CBs. Eventually, the system should propose an intervention/action to prevent escalation. In turn, improvement in QoL for both caregivers and PwD living in nursing homes (NHs) is expected. In the current project “MOnitoring Onbegrepen Gedrag bij Dementie met sensortechnologie” (MOOD-Sense), we aim to develop such a monitoring system. The strengths of this new monitoring system lie in its ability to align with the individual needs of the PwD, utilization of a combination of wearables and ambient sensors to obtain contextual data, such as location or sound, and predict or monitor CBs individually rather than in groups, thus facilitating person-centered care, based on ontological reasoning. The project is divided into three parts, Toolbox A, B and C. Toolbox A focuses on obtaining insight in which behaviors are challenging according to nurses and how they are described. Previous studies utilize clinical terminology to describe or classify behavior, we aim to employ concrete descriptions of behavior that are observable and independent of clinical terminology, aligning with nurses who are often the first to notice behavior and can be operationalized such that it can also be aligned with sensor data. As a result, an ontology will be developed based on the data such that sensor data can be integrated into the same conceptual information that standardizes the communication in our monitoring system. Toolbox B focuses on translating data coming from various sensors into the concepts expressed in the ontology, and timely communicate situations of interest to the caregivers. In Toolbox C the focus is exploring interventions/actions employed in practice to prevent CBs. Method In Toolbox A we used a qualitative approach to collect descriptions of CBs. For this purpose, we employed focus groups (FGs) with nursing staff who provide daily care to PwD. In Toolbox B pilot studies were conducted. A set of experiments using sensors in NHs were performed. During each pilot, multiple PwD with CBs in NHs were monitored with both ambient and wearables sensors. The pilots were iteratively approached, which means that insights from previous pilot studies were used to improve consecutive pilot studies. Lastly, the elaboration of Toolbox C is ongoing. Results and Discussion Regarding Toolbox A four FGs were conducted during the period from January 2023 to May 2024. Each FG was comprised of four nurses (n = 16). From the FGs we gained insights into behavioral descriptions and the context of CBs. Although data analysis has to be performed yet, there are indications that changes preceding CBs can be observed, such as frowning or clenching fists for agitation or aggression. Further results will be available soon. Regarding Toolbox B a monitoring system, based on sensors, is developed iteratively (see Figure 1) and piloted in three consecutive NHs from January 2021 to December 2023. Each pilot was comprised of two PwD (n = 6). Analysis of sensor data is ongoing.
LINK
The maturing field of Wireless Sensor Networks (WSN) results in long-lived deployments that produce large amounts of sensor data. Lightweight online on-mote processing may improve the usage of their limited resources, such as energy, by transmitting only unexpected sensor data (anomalies). We detect anomalies by analyzing sensor reading predictions from a linear model. We use Recursive Least Squares (RLS) to estimate the model parameters, because for large datasets the standard Linear Least Squares Estimation (LLSE) is not resource friendly. We evaluate the use of fixed-point RLS with adaptive thresholding, and its application to anomaly detection in embedded systems. We present an extensive experimental campaign on generated and real-world datasets, with floating-point RLS, LLSE, and a rule-based method as benchmarks. The methods are evaluated on prediction accuracy of the models, and on detection of anomalies, which are injected in the generated dataset. The experimental results show that the proposed algorithm is comparable, in terms of prediction accuracy and detection performance, to the other LS methods. However, fixed-point RLS is efficiently implementable in embedded devices. The presented method enables online on-mote anomaly detection with results comparable to offline LS methods. © 2013 IEEE.
DOCUMENT
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
Early detection of agitation in individuals with dementia can lead to timely interventions, preventing the worsening of situations and enhancing their quality of life. The emergence of multi-modal sensing and advances in artificial intelligence make it feasible to explore and apply technology for this goal. We conducted a literature review to understand the current technical developments and challenges of its integration in caregiving institutions. Our systematic review used the Pubmed and IEEE scientific databases, considering studies from 2017 onwards. We included studies focusing on linking sensor data to vocal and/or physical manifestations of agitation. Out of 1622 identified studies, 12 were selected for the final review. Analysis was conducted on study design, technology, decisional data, and data analytics. We identified a gap in the standardized semantic representation of both behavioral descriptions and system event generation configurations. This research highlighted initiatives that leverage existing information in a caregiver's routine, such as correlating electronic health records with sensor data. As predictive systems become more integrated into caregiving routines, false positive reduction needs to be addressed as those will discourage their adoption. Therefore, to ensure adaptive predictive capacity and personalized system re-configuration, we suggest future work to evaluate a framework that incorporates a human-in-the-loop approach for detecting and predicting agitation.
LINK
Introduction: Sensor-feedback systems can be used to support people after stroke during independent practice of gait. The main aim of the study was to describe the user-centred approach to (re)design the user interface of the sensor feedback system “Stappy” for people after stroke, and share the deliverables and key observations from this process. Methods: The user-centred approach was structured around four phases (the discovery, definition, development and delivery phase) which were fundamental to the design process. Fifteen participants with cognitive and/or physical limitations participated (10 women, 2/3 older than 65). Prototypes were evaluated in multiple test rounds, consisting of 2–7 individual test sessions. Results: Seven deliverables were created: a list of design requirements, a personae, a user flow, a low-, medium- and high-fidelity prototype and the character “Stappy”. The first six deliverables were necessary tools to design the user interface, whereas the character was a solution resulting from this design process. Key observations related to “readability and contrast of visual information”, “understanding and remembering information”, “physical limitations” were confirmed by and “empathy” was additionally derived from the design process. Conclusions: The study offers a structured methodology resulting in deliverables and key observations, which can be used to (re)design meaningful user interfaces for people after stroke. Additionally, the study provides a technique that may promote “empathy” through the creation of the character Stappy. The description may provide guidance for health care professionals, researchers or designers in future user interface design projects in which existing products are redesigned for people after stroke.
DOCUMENT
Anomaly detection is a key factor in the processing of large amounts of sensor data from Wireless Sensor Networks (WSN). Efficient anomaly detection algorithms can be devised performing online node-local computations and reducing communication overhead, thus improving the use of the limited hardware resources. This work introduces a fixed-point embedded implementation of Online Sequential Extreme Learning Machine (OS-ELM), an online learning algorithm for Single Layer Feed forward Neural Networks (SLFN). To overcome the stability issues introduced by the fixed precision, we apply correction mechanisms previously proposed for Recursive Least Squares (RLS). The proposed implementation is tested extensively with generated and real-world datasets, and compared with RLS, Linear Least Squares Estimation, and a rule-based method as benchmarks. The methods are evaluated on the prediction accuracy and on the detection of anomalies. The experimental results demonstrate that fixed-point OS-ELM can be successfully implemented on resource-limited embedded systems, with guarantees of numerical stability. Furthermore, the detection accuracy of fixed-point OS-ELM shows better generalization properties in comparison with, for instance, fixed-point RLS. © 2013 IEEE.
DOCUMENT
The creation of artifacts is one of the factors that make us human. Artifacts contribute to our continual adaptation to the world by permitting better knowledge and control of it. The focus of this chapter is on the role of one specific kind of artifact: sensors. In contrast to our immediate perception of the world from our senses, sensors provide large amount of reliable measurements of the physical world that enhance human cognitive capacities in overcoming our perceptual limitations. However, “raw” sensor data require interpretation that relies on different types of expertise and knowledge to provide relevant meaning for human (adaptive) purposes. We suggest that a cognitive approach to understanding the differences between the different types of knowledge provided by current sensors as artifacts and the human senses is of interest. This approach questions the conception of human cognition as an analytic system of processing information from the world rather than as one which interprets and gives meanings to the world. We posit that understanding the differences between human and artificial sensors can shape a new era of technological advancement that is uniquely collaborative insofar as it would rely on the partnership of scientists working in the Humanities and in the Natural Sciences. In this article we provide some data from cognitive research that outline the beginnings of a pluridisciplinary endeavor to conceive sensors which integrate performances of artifacts and the diversity and richness of human cognition, with the goal of transforming so-called “intelligent” devices into cognitive sensors.
LINK
We aim to set up a continuous low cost monitoring system for electromagnetic fields in the Netherlands, so that a trend in exposure to 5G signals can be observed. A number of options will be explored for this, such as software-defined radio and measurement nodes for specific 5G frequencies. We developed and tested low cost dedicated measurement nodes for four 5G bands: the 800, 1400, 2100 and 3500 MHz bands. Generally, the error is less than 1 dB and close to dynamic range limits (-65 to 5 dBm) the error increases to 3 dB.
DOCUMENT