A case study and method development research of online simulation gaming to enhance youth care knowlegde exchange. Youth care professionals affirm that the application used has enough relevance as an additional tool for knowledge construction about complex cases. They state that the usability of the application is suitable, however some remarks are given to adapt the virtual environment to the special needs of youth care knowledge exchange. The method of online simulation gaming appears to be useful to improve network competences and to explore the hidden professional capacities of the participant as to the construction of situational cognition, discourse participation and the accountability of intervention choices.
DOCUMENT
When it comes to hard to solve problems, the significance of situational knowledge construction and network coordination must not be underrated. Professional deliberation is directed toward understanding, acting and analysis. We need smart and flexible ways to direct systems information from practice to network reflection, and to guide results from network consultation to practice. This article presents a case study proposal, as follow-up to a recent dissertation about online simulation gaming for youth care network exchange (Van Haaster, 2014).
DOCUMENT
Fysieke onderwijsruimtes worden niet alleen anders ingericht in het kader van de gewenste flexibiliteit in de onderwijsvormgeving, ook de beschikbare technologie wordt in die ruimtes belangrijker. Daarmee ontstaan nieuwe learning spaces in instituten voor hoger onderwijs die ook nieuwe mogelijkheden bieden voor het vormgeven van een grote variatie aan onderwijsleerpraktijken. Het verkennend onderzoek had als doel het in kaart brengen van de ontwikkelingen in Nederlandse hoger onderwijs met betrekking tot technologierijke learning spaces, en inzicht krijgen in het gebruik van deze technologierijke learning spaces in een aantal instituten die er gebruik van maken. Een van de inzichten uit het onderzoek is de indeling in vier verschillende typen op basis van het gebruik van de ruimte. In dit document zijn de uitkomsten van het onderzoek beknopt en visueel weergegeven.
DOCUMENT
Reflections on skill development theory and simulation game-play practice, using MS Flight Simulator and the MSP Challenge Simulation Platform as cases.
DOCUMENT
To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.
DOCUMENT
This paper presents the design of the offshore energy simulation CEL as a flow network, and its integration in the MSP Challenge 2050 simulation game platform. This platform is designed to aid learning about the key characteristics and complexity of marine or maritime spatial planning (MSP). The addition of CEL to this platform greatly AIDS MSP authorities in learning about and planning for offshore energy production, a highly topical and big development in human activities at sea. Rather than a standard flow network, CEL incorporates three additions to accommodate for the specificities of energy grids: an additional node for each team's expected energy, a split of each node representing an object into input and output parts to include the node's capacity, and bidirectional edges for all cables to enable more complex energy grid designs. Implemented with Dinic's algorithm it takes less than 30ms for the simulation to run for the average amount of grids included in an MSP Challenge 2050 game session. In this manner CEL enables MSP authorities and their energy stakeholders to use MSP Challenge 2050 for designing and testing more comprehensive offshore energy grids.
DOCUMENT
Als relatief nieuw begrip in de context van e-learning krijgt ‘mobile learning’ steeds meer aandacht, wat ten dele kan worden verklaard door de ontwikkeling en verspreiding van mobiele technologie. Als we de pleitbezorgers van ‘mobile learning’ moeten geloven, dan wordt deze vorm van leren belangrijker en is het denkbaar dat sommige leerprocessen in de toekomst volledig op die wijze vormgegeven zullen worden. Probleem is dat een eenduidige definitie van ‘mobile learning’ nog altijd ontbreekt, dat er meningsverschillen zijn over de technologie die tot het domein van ‘mobile learning’ behoort, en dat er betrekkelijk weinig resultaten zijn van succesvolle inzet van mobiele technologie in leerprocessen. Daarbij wordt onder succesvol verstaan dat het heeft bijgedragen aan de effectiviteit van het leren, en daarmee aan een beter leerresultaat en een efficiënter leerproces, waarbij onder het laatste verstaan wordt dat het maximale leereffect wordt bereikt met een beperkte inzet van mensen en middelen. Deze notitie beoogt enige duidelijkheid te scheppen in de definitiekwestie en in de visies op leren die een rol spelen bij ‘mobile learning’. Vanuit dat perspectief wordt vervolgens ingegaan op kenmerken van mobiele technologie en ontwikkelingen die daarin verwacht worden. Aansluitend wordt er dieper ingegaan op leerprocessen en de rol die mobiele technologie daarin zou kunnen vervullen, waarna de notitie wordt afgesloten met een kijkkader om de mogelijke inzet en betekenis van ‘mobile learning’ in onderwijssituaties te kunnen duiden en beoordelen.
DOCUMENT
Introduction Innovation is crucial for companies who have to react to constantly changing markets. Several national and European research institutes stress the importance of developing innovation for small and medium size enterprises (SMEs). This was a trigger to design a minor on strategic innovation for different disciplines - technical and economic departments - of the Fontys University of Applied Sciences. It prepares students to be more competent to take initiatives in developing innovation. The newly designed education should be an answer to the question of how to help companies to become more able to adapt to new changes in the market by providing them with higher educated personnel, who have developed competences on strategic innovation. The starting point for the research is the perceived effectiveness of teaching students to take part in developing innovation at SMEs. More specifically, the question is how to develop action-oriented learning environments to develop competences for innovation development. Research The central research question of this thesis is: In what way could a competence-based and action-oriented learning environment on innovation development in SMEs be designed? This research question provides a basis for evaluating three implementations of the minor learning program (30 EC) on strategic innovation. Findings of the research indicate the importance of educating students about innovation. Educational strategies such as partnering learners with SME staff, simulation exercises, and hands-on exercises all contribute to students' analytical skills. 'Real world' experience in corporate settings helps students bridge the gap between theory and practice, and consequently prepares them to be competitive in their chosen employment. In the period from 2006 till 2009, three academic years were spend to teach students knowledge and competences on strategic innovation. The parameters evaluated are relevance and effectiveness and the system to be analysed is the minor 'strategic innovation'. These two parameters are described as follows: Relevance Teachers and students consider all teaching elements of the minor required to adequately prepare for contributions to innovation development in SMEs relevant. Key persons from SMEs believe that such knowledge and competences are important for companies to increase market competitiveness through innovation. Effectiveness Students develop perceptions on how innovation developments should be initiated in SMEs. They learn how to analyse companies for indicators of and preparation for changes. Students are capable of formulating an innovation development advice for companies, and explain how current activities could be changed to improve corporate success. These parameters are the focus of the measuring method. Optimization of the parameters improves the learning conditions. There is a relation between the two parameters and the variables of a conceptual model with which data can be categorised. Conclusions and recommendations The thesis concludes with a model to analyse the different positions and perspectives of the stakeholders. It is also used for designing a competence-based and action-oriented program. During the research, it became clear that teachers were having a major role in the learning processes of students to change them from rather inexperienced in strategic innovation, into being experienced to the level of starting professionals. Teachers must therefore have many different abilities/competences. For these teachers, it is important that they have - to a certain extent - an expertise in the field of study so they are able to coach and lecture their students properly. Therefore it is necessary that they have their networks with companies on this matter, which enables them to discuss the reality of innovation in the company. Next to the ability to understand the content, teachers must have the ability to determine the starting level of the students of different disciplines joining the minor and choose lecture and coaching conditions with which each student can learn effectively. Teachers therefore must be able to use several strategies of teaching. Students themselves also need to be experienced in interdisciplinary cooperation to work in strategic innovation projects. From these multidisciplinary approaches, teachers must be able to guarantee learning effectiveness to the major goal of the minor education. In order to do so, teachers need to collaborate themselves with their colleagues and agree to the formulated conditions of the minor education. The conclusions as presented from the data of the research are focussed on the teacher being the provider of knowledge and the "manager" of learning activities of students. The main success factors of these conclusions can be formulated as follows. 1. Teachers need to get the opportunity to become adapted to new fields of study in order to have a relevant contribution. 2. Teachers must use their network to find companies that fit to the goals of the minor. 3. Teachers need to determine the match of complexity of the minor and minimum conditions for students to join. 4. Teachers must understand how to help students to work interdisciplinary. 5. Teachers must adapt to new teaching and learning strategies to make the educational processes effective. 6. Teachers in a multidisciplinary teaching and learning context need to be informed on the background of students to make their teaching more effective. 7. Teachers must be able to present the specific theme of their lectures in the context of the goal of the minor to make their teaching activities effective. 8. Teachers from various disciplines working in a multidisciplinary minor need to work interdisciplinary with their colleagues. 9. Teachers must agree to the formulations of the competences. Universities of applied sciences mostly educate young professionals in the region they are situated in. They need to feel the responsibility to follow the needs of companies, like competences of starting professionals on innovation development, and give teachers the opportunities to make improvements of the education with which starting students are being prepared to become starting professionals in companies.
DOCUMENT
Introduction: Nursing students will come across stressful situations during their internships and will continue to do so in future practice. Because of the impact stress can have on performance, nursing students need to be equipped to work and collaborate in such situations. Careful consideration of the needs and desires of nursing students should be taken in account, in order to create a training environment that fosters students' ability to learn to collaborate under stress. Aim: The aim of this study is to identify viewpoints of undergraduate nursing students towards the learning of collaboration in stressful situations, to understand their needs and desires, and to improve educational designs for training to collaborate in stressful situations. Methods: We conducted a Q-methodology study, a mixed methods approach that studies and charts subjectivity, and uses a by-person factor analytical procedure to create profiles of shared viewpoints. The process of our Q-study is based on the following five steps: Q-set development (54 statements), participant selection (n = 29), Q-sorting procedure, data analysis, and factor interpretation. Results: Q-factor analysis resulted in two prevailing factors that answer our research question. Twenty-five students loaded on these two factors, and factor interpretation resulted in Profile 1 “Practice makes perfect, so let's do it” and Profile 2 “Practice is needed, but it scares me”. Whereas Profile 1 regarded learning to collaborate in stress mainly as a challenge, Profile 2 appeared anxious despite feeling the necessity to learn this. An overarching consensus factor revealed the importance of a learning environment in which mistakes can be made. Discussion: The two described profiles align with the biopsychosocial model of challenge and threat, and could help to recognize and address the individual needs of nursing students when learning to collaborate in stressful situations. Incorporating these profiles in training may guide students towards a more challenge-like appraisal of stressful situations.
DOCUMENT
Shared Vision Planning (SVP) is a collaborative approach to water (resource) management that combines three practices: (1) traditional water resources planning; (2) structured participation of stakeholders; (3) (collaborative) computer modeling and simulation. The authors argue that there are ample opportunities for learning and innovation in SVP when we look at it as a form of Policy Analysis (PA) in a multi-actor context. SVP faces three classic PA dilemmas: (1) the role of experts and scientific knowledge in policymaking; (2) The design and management of participatory and interactive planning processes; and (3) the (ab)use of computer models and simulations in (multi actor) policymaking. In dealing with these dilemmas, SVP can benefit from looking at the richness of PA methodology, such as for stakeholder analysis and process management. And it can innovate by incorporating some of the rapid developments now taking place in the field of (serious) gaming and simulation (S&G) for policy analysis. In return, the principles, methods, and case studies of SVP can significantly enhance how we perform PA for multi-actor water (resource) management.
DOCUMENT