Stroke is the second most common cause of death and the third leading cause of disability worldwide,1,2 with the burden expected to increase during the next 20 years.1 Almost 40% of the people with stroke have a recurrent stroke within 10 years,3 making secondary prevention vital.3,4 High amounts of sedentary time have been found to increase the risk of cardiovascular disease,5–11 particularly when the sedentary time is accumulated in prolonged bouts.12–15 Sedentary behavior, is defined as “any waking behavior characterized by an energy expenditure ≤1.5 Metabolic Equivalent of Task (METs) while in a sitting, reclining or lying posture”.16,17 Studies in healthy people, as well as people with diabetes and obesity, have shown that reducing the total amount of sedentary time and/or breaking up long periods of uninterrupted sedentary time, reduces metabolic risk factors associated with cardiovascular disease.6,9,10,12–15 Recent studies have shown that people living in the community after stroke spend more time each day sedentary, and more time in uninterrupted bouts of sedentary time compared to age-matched healthy peers.18–20 Reducing sedentary time and breaking up long sedentary bouts with short bursts of activity may be a promising intervention to reduce the risk of recurrent stroke and other cardiovascular diseases in people with stroke. To develop effective interventions, it is important to understand the factors associated with sedentary time in people with stroke. Previous studies have found associations between self-reported physical function after stroke and total sedentary time, but inconsistent results with regards to the relationship of age, stroke severity, and walking speed with sedentary time.20,21 These results are from secondary analyses of single-site observational studies, not powered to address associations, and inconsistent in the methods used to determine waking hours; thus making direct comparisons between studies difficult.20,21 Individual participant data pooling, with consistent processing of wake time data, allows novel exploratory analyses of larger datasets with greater power. By pooling all available individual participant data internationally, this study aimed to comprehensively explore the factors associated with sedentary time in community-dwelling people with stroke. Specifically, our research questions were: (1) What factors are associated with total sedentary time during waking hours after stroke? (2) What factors are associated with time spent in prolonged sedentary bouts during waking hours?
DOCUMENT
OBJECTIVE: The aim of this study was to explore the longitudinal relationship between sitting time on a working day and vitality, work performance, presenteeism, and sickness absence.METHODS: At the start and end of a five-month intervention program at the workplace, as well as 10 months after the intervention, sitting time and work-related outcomes were measured using a standardized self-administered questionnaire and company records. Generalized linear mixed models were used to estimate the longitudinal relationship between sitting time and work-related outcomes, and possible interaction effects over time.RESULTS: A significant and sustainable decrease in sitting time on a working day was observed. Sitting less was significantly related to higher vitality scores, but this effect was marginal (b = -0.0006, P = 0.000).CONCLUSIONS: Our finding of significant though marginal associations between sitting time and important work-related outcomes justifies further research.
DOCUMENT
BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
DOCUMENT
Purpose: Law enforcement may require police officers to inhibit intuitive responses to high threat and thereby affect their emotional reaction and operational effectiveness. Upon this premise, the current study reports two experiments which compare the impact of two relevant shot execution strategies on police officers’ shooting performance under high threat, including (1) fire at an armed assailant and then step away from the assailant's line of fire (‘fire-step’) or (2) step away from the assailant's line of fire and then fire (‘step-fire’). Method: In Experiment 1, 15 experienced police officers performed both shot execution strategies against a stationary assailant who occasionally shot back with coloured soap cartridges (high threat), while we measured their state anxiety, movement times and shot accuracy. In Experiment 2, the same 15 officers remained stationary and fired at the assailant who now performed both shot execution strategies in random order, thereby providing an indication of the risk (i.e., chance to get hit) associated with performing either strategy. Results: Experiment 1 showed that officers preferred using the step-fire strategy and that using this strategy resulted in lower levels of anxiety, increased time for aiming and more accurate shooting than the fire-step strategy. Experiment 2, however, indicated that the step-fire strategy also increases one's chance of getting hit. Conclusions: Findings suggest that inhibition of preferred responses under high threat (as in the fire-step strategy) may increase state anxiety and negatively affect shooting performance in police officers. Future work is needed to reveal underlying mechanisms and explore implications for practice.
DOCUMENT
Prolonged sitting time in adults has become a major societal issue with far-reaching health, economic, and social consequences. The objective of this study is to reduce sedentary behaviour in office workers by integrating physical activity with work. In this case study, we present Workwalk, a concept to encourage and facilitate office workers to have a walking meeting. This idea arose by merging a traditional health research approach with an iterative design process. With this method, it was possible to integrate behaviour change techniques effectively into an interaction design process.
DOCUMENT
OBJECTIVE: To investigate the level of agreement of the behavioural mapping method with an accelerometer to measure physical activity of hospitalized patients. DESIGN: A prospective single-centre observational study. SETTING: A university medical centre in the Netherlands. SUBJECTS: Patients admitted to the hospital. MAIN MEASURES: Physical activity of participants was measured for one day from 9 AM to 4 PM with the behavioural mapping method and an accelerometer simultaneously. The level of agreement between the percentages spent lying, sitting and moving from both measures was evaluated using the Bland-Altman method and by calculating Intraclass Correlation Coefficients. RESULTS: In total, 30 patients were included. Mean (±SD) age was 63.0 (16.8) years and the majority of patients were men (n = 18). The mean percentage of time (SD) spent lying was 47.2 (23.3) and 49.7 (29.8); sitting 42.6 (20.5) and 40.0 (26.2); and active 10.2 (6.1) and 10.3 (8.3) according to the accelerometer and observations, respectively. The Intraclass Correlation Coefficient and mean difference (SD) between the two measures were 0.852 and -2.56 (19.33) for lying; 0.836 and 2.60 (17.72) for sitting; and 0.782 and -0.065 (6.23) for moving. The mean difference between the two measures is small (⩽2.6%) for all three physical activity levels. On patient level, the variation between both measures is large with differences above and below the mean of ⩾20% being common. CONCLUSION: The overall level of agreement between the behavioural mapping method and an accelerometer to identify the physical activity levels 'lying', 'sitting' and 'moving' of hospitalized patients is reasonable.
DOCUMENT
Objective. Hospital in Motion is a multidimensional implementation project aiming to improve movement behavior during hospitalization. The purpose of this study was to investigate the effectiveness of Hospital in Motion on movement behavior. Methods. This prospective study used a pre-implementation and post-implementation design. Hospital in Motion was conducted at 4 wards of an academic hospital in the Netherlands. In each ward, multidisciplinary teams followed a 10-month step-by-step approach, including the development and implementation of a ward-specific action plan with multiple interventions to improve movement behavior. Inpatient movement behavior was assessed before the start of the project and 1 year later using a behavioral mapping method in which patients were observed between 9:00 am and 4:00 pm. The primary outcome was the percentage of time spent lying down. In addition, sitting and moving, immobility-related complications, length of stay, discharge destination home, discharge destination rehabilitation setting, mortality, and 30-day readmissions were investigated. Differences between pre-implementation and post-implementation conditions were analyzed using the chi-square test for dichotomized variables, the Mann Whitney test for non-normal distributed data, or independent samples t test for normally distributed data. Results. Patient observations demonstrated that the primary outcome, the time spent lying down, changed from 60.1% to 52.2%. For secondary outcomes, the time spent sitting increased from 31.6% to 38.3%, and discharges to a rehabilitation setting reduced from 6 (4.4%) to 1 (0.7%). No statistical differences were found in the other secondary outcome measures. Conclusion. The implementation of the multidimensional project Hospital in Motion was associated with patients who were hospitalized spending less time lying in bed and with a reduced number of discharges to a rehabilitation setting. Impact. Inpatient movement behavior can be influenced by multidimensional interventions. Programs implementing interventions that specifically focus on improving time spent moving, in addition to decreasing time spent lying, are recommended.
DOCUMENT
Purpose: In Amsterdam – the Netherlands – we know that children living in low income households have a lower health status and report lower physical activity levels than their peers in middle- or high-income households. Seven primary schools located in neighborhoods with a low social-economic status are currently developing their own active school using the ‘Creating Active Schools Framework’. This study was conducted to assess the current physical activity and sedentary behavior patterns during and after school of the pupils in these seven primary schools.Methods: In this cross-sectional study, we collect data in seven schools located within an Amsterdam neighborhood with a low social economic status score. Within each school, 4 classes are eligible for participation. Children wear an accelerometer from Monday morning until Friday afternoon to assess physical activity levels. Parents of participating children are asked to complete a questionnaire on baseline characteristics, wellbeing and out of school physical activity behaviors. The mean sedentary time (ST), low physical activity (LPA) time and Moderate to Vigorous physical activity (MVPA) time will be calculated. The association between the outcomes of the accelerometer data and gender and health related outcomes reported by parents will be assessed.Results: The data will be collected between March and May 2023. We will present the average LPA and MVPA during and after school time. The duration of the ST bouts during and after schooltime. And associations between ST, LPA and MVPA and gender and health related outcomes.Conclusions: The results of this study will be used to support local school teams in the development and implementation of local action plans towards a school day that involves less sitting and more physical activity.
DOCUMENT
Background and purpose The aim of this study is to investigate changes in movement behaviors, sedentary behavior and physical activity, and to identify potential movement behavior trajectory subgroups within the first two months after discharge from the hospital to the home setting in first-time stroke patients. Methods A total of 140 participants were included. Within three weeks after discharge, participants received an accelerometer, which they wore continuously for five weeks to objectively measure movement behavior outcomes. The movement behavior outcomes of interest were the mean time spent in sedentary behavior (SB), light physical activity (LPA) and moderate to vigorous physical activity (MVPA); the mean time spent in MVPA bouts ≥ 10 minutes; and the weighted median sedentary bout. Generalized estimation equation analyses were performed to investigate overall changes in movement behavior outcomes. Latent class growth analyses were performed to identify patient subgroups of movement behavior outcome trajectories. Results In the first week, the participants spent an average, of 9.22 hours (67.03%) per day in SB, 3.87 hours (27.95%) per day in LPA and 0.70 hours (5.02%) per day in MVPA. Within the entire sample, a small but significant decrease in SB and increase in LPA were found in the first weeks in the home setting. For each movement behavior outcome variable, two or three distinctive subgroup trajectories were found. Although subgroup trajectories for each movement behavior outcome were identified, no relevant changes over time were found. Conclusion Overall, the majority of stroke survivors are highly sedentary and a substantial part is inactive in the period immediately after discharge from hospital care. Movement behavior outcomes remain fairly stable during this period, although distinctive subgroup trajectories were found for each movement behavior outcome. Future research should investigate whether movement behavior outcomes cluster in patterns.
MULTIFILE
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE