Granular starch was cross-linked with 1,3-di-O-acetyl-2-nitro-1,3-propanediol (1), 1,3-di-O-pivaloyl-2-nitro-1,3-propanediol (2), 2-nitro-3-O-pivaloyl-1-propene-3-ol (3), 1,3-di-O-acetyl-aci-2-nitro-1,3-propanediol (4), 1,3-di-O-pivaloyl-aci-2-nitro-1,3-propanediol (5) and 1,6-di-O-acetyl-2,5-dinitro-1,6-hexanediol (6). The bifunctional precursors for the nitro-alkenes 1, 2, 3, and 4 were readily synthesized in high yields from nitromethane, paraformaldehyde and acetic anhydride (1, 3) or pivaloyl chloride (2, 4), respectively. The reaction rate for the cross-linking was very high, and for 1 and 3, the reaction reached completion within 1 h (at room temperature). The swelling capacities of the products obtained when starch was cross-linked with precursors for the nitroalkenes 1-4 and 6 were lower in comparison to epichlorohydrin cross-linked starch. These results indicate a high reaction efficiency at low degrees of substitution. Cross-linked 2-nitroalkyl starch ethers were synthesized in a one-pot synthesis by addition of 1 or 3 and 2-nitroalkyl acetates to granular suspensions of starch. Copyright (C) 1998 Elsevier Science Ltd.
DOCUMENT
Modified starches are used widely in the food industry but often have a low nutritional value, lacking minerals vital for the human body, such as magnesium. Magnesium addition to native starches has been shown to result in changes in pasting properties. However, little work has been done on the addition of magnesium and other divalent cations to highly oxidised starches. In this work, we used dibasic magnesium hypochlorite (DMH) to oxidise potato starch to an industrially relevant degree of oxidation while at the same time introducing magnesium into the starch structure. We found that magnesium incorporation changes the pasting properties of starch and increases the gelatinisation temperature significantly, possibly due to an ionic cross-linking effect. These properties resemble the properties found for heat-moisture-treated potato starches. This change in properties was found to be reversible by performing a straightforward exchange of metal cations, either from sodium to magnesium or from magnesium to sodium. We show in this work the potential of the addition of divalent cations to highly oxidised starches in modifying the rheological and pasting properties of these starches and at the same time adding possible health benefits to modified starches by introducing magnesium.
DOCUMENT
Network Applied Design Research (NADR) made an inventory of the current state of Circular Design Research in the Netherlands. In this publication, readers will find a summary of six promising ‘gateways to circularity’ that may serve as entry points for future research initiatives. These six gateways are: Looped Systems; Extension of Useful Lifetime; Servitisation; New Materials and Production Techniques; Information Technology and Digitization; and Creating Public and Industry Awareness. The final chapter offers an outlook into topics that require more profound examination. The NADR hopes that this publication will serve as a starting point for discussions among designers, entrepreneurs, and researchers, with the goal of initiating future collaborative projects. It is the NADR's belief that only through intensive international cooperation, we can contribute to the realization of a sustainable, circular, and habitable world.
DOCUMENT