Poster presented at the 14th Congress of the European Society for Research in Mathematics Education, Free University of Bozen-Bolsano, Italy.
DOCUMENT
Citizens regularly search the Web to make informed decisions on daily life questions, like online purchases, but how they reason with the results is unknown. This reasoning involves engaging with data in ways that require statistical literacy, which is crucial for navigating contemporary data. However, many adults struggle to critically evaluate and interpret such data and make data-informed decisions. Existing literature provides limited insight into how citizens engage with web-sourced information. We investigated: How do adults reason statistically with web-search results to answer daily life questions? In this case study, we observed and interviewed three vocationally educated adults searching for products or mortgages. Unlike data producers, consumers handle pre-existing, often ambiguous data with unclear populations and no single dataset. Participants encountered unstructured (web links) and structured data (prices). We analysed their reasoning and the process of preparing data, which is part of data-ing. Key data-ing actions included judging relevance and trustworthiness of the data and using proxy variables when relevant data were missing (e.g., price for product quality). Participants’ statistical reasoning was mainly informal. For example, they reasoned about association but did not calculate a measure of it, nor assess underlying distributions. This study theoretically contributes to understanding data-ing and why contemporary data may necessitate updating the investigative cycle. As current education focuses mainly on producers’ tasks, we advocate including consumers’ tasks by using authentic contexts (e.g., music, environment, deferred payment) to promote data exploration, informal statistical reasoning, and critical web-search skills—including selecting and filtering information, identifying bias, and evaluating sources.
LINK
Graphs are ubiquitous. Many graphs, including histograms, bar charts, and stacked dotplots, have proven tricky to interpret. Students’ gaze data can indicate students’ interpretation strategies on these graphs. We therefore explore the question: In what way can machine learning quantify differences in students’ gaze data when interpreting two near-identical histograms with graph tasks in between? Our work provides evidence that using machine learning in conjunction with gaze data can provide insight into how students analyze and interpret graphs. This approach also sheds light on the ways in which students may better understand a graph after first being presented with other graph types, including dotplots. We conclude with a model that can accurately differentiate between the first and second time a student solved near-identical histogram tasks.
DOCUMENT
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
Om inzicht te krijgen in spierveroudering is genexpressie gemeten in vastus lateralis biopten van jonge en oude mannen en vrouwen. We vonden dat tijdens het ouder worden bij beide geslachten dezelfde categorieën genen in spieren worden aan- en uitgeschakeld (“gereguleerd”); de mate van deze zogenaamde differentiële expressie was echter geslachtsspecifiek. Bij mannen was oxidatieve fosforylering het meest in het oog springende proces, en bij vrouwen was dit celgroei gemedieerd door AKT-signalering. De conclusie is dat dezelfde processen zijn geassocieerd met skeletspierveroudering bij mannen en vrouwen, maar dat de differentiële expressie van die processen geslachtsspecifiek is.
MULTIFILE
Terms like ‘big data’, ‘data science’, and ‘data visualisation’ have become buzzwords in recent years and are increasingly intertwined with journalism. Data visualisation may further blur the lines between science communication and graphic design. Our study is situated in these overlaps to compare the design of data visualisations in science news stories across four online news media platforms in South Africa and the United States. Our study contributes to an understanding of how well-considered data visualisations are tools for effective storytelling, and offers practical recommendations for using data visualisation in science communication efforts.
LINK
We tested the hypothesis that in human ageing a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance and altered mitochondrial function. Results showed that intramuscular total carnitine levels and acetylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular acetylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. We concluded that in (pre-)frail old females, intramuscular total carnitine levels and acetylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in ageing research.
MULTIFILE
The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions https://doi.org/10.3390/app10238348 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
This study aims to help professionals in the field of running and running-related technology (i.e., sports watches and smartphone applications) to address the needs of runners. It investigates the various runner types—in terms of their attitudes, interests, and opinions (AIOs) with regard to running—and studies how they differ in the technology they use. Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS2016). In total, 3723 participants completed the questionnaire. Principal component analysis and cluster analysis were used to identify the different running types, and crosstabs obtained insights into the use of technology between different typologies. Based on the AIOs, four distinct runner types were identified: casual individual, social competitive, individual competitive, and devoted runners. Subsequently, we related the types to their use of sports watches and apps. Our results show a difference in the kinds of technology used by different runner types. Differentiation between types of runners can be useful for health professionals, policymakers involved in public health, engineers, and trainers or coaches to adapt their services to specific segments, in order to make use of the full potential of running-related systems to support runners to stay active and injury-free and contribute to a healthy lifestyle.
DOCUMENT
We present a novel architecture for an AI system that allows a priori knowledge to combine with deep learning. In traditional neural networks, all available data is pooled at the input layer. Our alternative neural network is constructed so that partial representations (invariants) are learned in the intermediate layers, which can then be combined with a priori knowledge or with other predictive analyses of the same data. This leads to smaller training datasets due to more efficient learning. In addition, because this architecture allows inclusion of a priori knowledge and interpretable predictive models, the interpretability of the entire system increases while the data can still be used in a black box neural network. Our system makes use of networks of neurons rather than single neurons to enable the representation of approximations (invariants) of the output.
LINK