Reading and writing is modelled in CSP using actions containing the symbols ? and !. These reading actions and writing actions are synchronous, and there is a one-to-one relationship between occurrences of pairs of these actions. In the CPA conference 2016, we introduced the half-synchronous alphabetised parallel operator X ⇓ Y , which disconnects the writing to and reading from a channel in time. We introduce in this paper an extension of X ⇓ Y , where the definition of X ⇓ Y is relaxed; the reading processes are divided into sets which are set-wise asynchronous, but intra-set-wise synchronous, giving full flexibility to the asynchronous writes and reads. Furthermore, we allow multiple writers to the same channel and we study the impact on a Vertex Removing Synchronised Product. The advantages we accomplish are that the extension of X ⇓ Y gives more flexibility by indexing the reading actions and allowing multiple write actions to the same channel. Furthermore, the extension of X ⇓Y reduces the end-to-end processing time of the processor or coprocessor in a distributed computing system. We show the effects of these advantages in a case study describing a Controlled Emergency Stop for a processor-coprocessor combination.
Meet the club-goer. Today he woke up thinking that, compared to the typical weight of his miseries, the day feels quite light. Upon waking up, he suddenly decided to go to the club tonight. Prior to this happening, he makes a pact with himself to do his duties: deliver to society and eat his meals. Perhaps even go for a little run? The thought of running charms him immediately, and the next thing we see is him running. As he runs by the secondhand shop, his thoughts begin shuffling the colors of classic logos: Hip-Hop, happy meals, all MTV channel extensions, Vans shoes purchased every six months. Although he is not a big fan of retromanic gestures, the club-goer wouldn’t mind wearing a logo – or two – in the club tonight. Just like before, he could commemorate his teenage years with someone who would empathize with the logo.
MULTIFILE
Have you ever seen a place transformed beyond recognition? Maybe a local lake dried up, or a treasured tree blew down, leaving an empty space where there was once a landmark. Places change. Landscapes transform because of human intervention and events like extreme weather. Not every change needs to be a loss. But some changes are devastating. Why do we grieve for some losses, and not others? Why does it upset us when a stately local tree is cut down near, but not affect us when an area the size of Cyprus is deforested every year in the Amazon?
MULTIFILE
Mycelium biocomposites (MBCs) are a fairly new group of materials. MBCs are non-toxic and carbon-neutral cutting-edge circular materials obtained from agricultural residues and fungal mycelium, the vegetative part of fungi. Growing within days without complex processes, they offer versatile and effective solutions for diverse applications thanks to their customizable textures and characteristics achieved through controlled environmental conditions. This project involves a collaboration between MNEXT and First Circular Insulation (FC-I) to tackle challenges in MBC manufacturing, particularly the extended time and energy-intensive nature of the fungal incubation and drying phases. FC-I proposes an innovative deactivation method involving electrical discharges to expedite these processes, currently awaiting patent approval. However, a critical gap in scientific validation prompts the partnership with MNEXT, leveraging their expertise in mycelium research and MBCs. The research project centers on evaluating the efficacy of the innovative mycelium growth deactivation strategy proposed by FC-I. This one-year endeavor permits a thorough investigation, implementation, and validation of potential solutions, specifically targeting issues related to fungal regrowth and the preservation of sustained material properties. The collaboration synergizes academic and industrial expertise, with the dual purpose of achieving immediate project objectives and establishing a foundation for future advancements in mycelium materials.
Foodsecurity, duurzaam gebruik van grondstoffen en water zijn items die zijn terug te vinden in de Grand Challenges in de EU-onderzoekagenda Horizon2020. In de tuinbouw vindt dit zijn plaats door steeds meer op microniveau teelt, groei en oogst te beïnvloeden. De Nederlandse tuinbouw loopt hiermee wereldwijd voorop en de kennis en kunde is een belangrijk exportproduct. Bedrijven hebben niettemin te weinig controle over de gewascondities in de tuinbouwkas met negatieve gevolgen voor de oogstopbrengst en overmatig gebruik van grondstoffen. Het teelt- en oogstproces in een tuinbouwkas kan aanzienlijk worden verbeterd door tot op microniveau een betrouwbaar en integraal beeld te verkrijgen van de verdeling van kritische gewasparameters binnen de kas. Via slimme monitoring kunnen eveneens concentraties van ziektekiemen gedetecteerd worden en 3D-beelden worden gemaakt van het gewas. Met hulp van deze informatie kunnen kwantiteit en kwaliteit van de oogst tot op microniveau worden getraceerd om de relatie tussen genomen maatregelen en verkregen effecten na te gaan. De regel-lus met het monitoringsysteem dient hiervoor te worden gesloten, waardoor men vooraf kan gaan sturen op basis van verkregen kennis en ervaring. Zo kan verkregen informatie worden ingezet b.v. om lokaal efficiënt te draineren en te bewateren en om CO2-gehaltes, hoeveelheid licht en temperatuur optimaal aan te passen aan benodigde kascondities. Ook kunnen effectief maatregelen tegen ziektes op plantniveau worden genomen en kunnen oogstopbrengsten worden gemaximaliseerd. Inzet van slim datamanagement is voor dit alles een must. Ambitie van SCOUT is het ontwikkelen van een integraal monitoringequipment- en methodologieconcept in de kas om gewas- en omgevingsparameters van tomaten op robuuste en betrouwbare wijze te kunnen verzamelen en modelmatig te analyseren. Telers willen deze informatie gebruiken voor het nemen van beheersmaatregelen t.b.v. meer controle op uniformiteit in de vruchtontwikkeling. De ambitie wordt uitgewerkt via opzet van slimme meetmethodieken en data-gebaseerde groeimodellen op plant- en vakniveau, die in de praktijk worden uitgetest met integrale sensorconcepten. Verder wordt een data-infrastructuur ontwikkeld inclusief een data dashboard voor visualisatie van de monitoring resultaten. Zo krijgt de tuinder een real-time beeld van de verdeling van kritische gewasparameters in de kas en kan hij in de toekomst de opbrengst bij de oogst beter voorspellen en beïnvloeden met als doel uniformiteit van de oogst, maximalisering van economische opbrengst en minimalisering van milieu-impact. SCOUT is een samenwerking van kennisinstellingen en bedrijven. Partners zijn de hogescholen: HAS hogeschool, Avans, Fontys , Inholland, Haagse Hogeschool en de NHL. WUR ondersteunt het project met wetenschappelijk advies. Participerende bedrijven zijn telers van met name tomaten of toeleveranciers van technologie aan de glastuinbouw. Tenslotte is de landelijke gewascommissie Tomaat en Paprika van LTO Glaskracht Nederland (onderdeel ZLTO) betrokken. SCOUT maakt bestaande kennis toepasbaar en ontwikkelt nieuwe kennis t.b.v. een slimme en robuuste sensor- en data-infrastructuur en groeimodellering in de kas. Verder vindt verankering van kennis en kunde in onderwijs en lectoraten plaats en een vergroting van de kwaliteit van docenten en afstudeerders. Circa 20 (docent)onderzoekers van de hogescholen en circa 100 studenten worden betrokken, die via stages en afstudeeronderzoeken werken aan interessante vraagstukken direct afkomstig uit de beroepspraktijk.
Prompt and timely response to incoming cyber-attacks and incidents is a core requirement for business continuity and safe operations for organizations operating at all levels (commercial, governmental, military). The effectiveness of these measures is significantly limited (and oftentimes defeated altogether) by the inefficiency of the attack identification and response process which is, effectively, a show-stopper for all attack prevention and reaction activities. The cognitive-intensive, human-driven alarm analysis procedures currently employed by Security Operation Centres are made ineffective (as opposed to only inefficient) by the sheer amount of alarm data produced, and the lack of mechanisms to automatically and soundly evaluate the arriving evidence to build operable risk-based metrics for incident response. This project will build foundational technologies to achieve Security Response Centres (SRC) based on three key components: (1) risk-based systems for alarm prioritization, (2) real-time, human-centric procedures for alarm operationalization, and (3) technology integration in response operations. In doing so, SeReNity will develop new techniques, methods, and systems at the intersection of the Design and Defence domains to deliver operable and accurate procedures for efficient incident response. To achieve this, this project will develop semantically and contextually rich alarm data to inform risk-based metrics on the mounting evidence of incoming cyber-attacks (as opposed to firing an alarm for each match of an IDS signature). SeReNity will achieve this by means of advanced techniques from machine learning and information mining and extraction, to identify attack patterns in the network traffic, and automatically identify threat types. Importantly, SeReNity will develop new mechanisms and interfaces to present the gathered evidence to SRC operators dynamically, and based on the specific threat (type) identified by the underlying technology. To achieve this, this project unifies Dutch excellence in intrusion detection, threat intelligence, and human-computer interaction with an industry-leading partner operating in the market of tailored solutions for Security Monitoring.