The visual representation of Information System (IS) artefacts is an important aspect in the practical application of visual representations. However, important and known visual representation principles are often undervalued, which could lead to decreased effectiveness in using a visual representation. Decision Management (DM) is one field of study in which stakeholders must be able to utilize visual notations to model business decisions and underlying business logic, which are executed by machines, thus are IS artefacts. Although many DM notations currently exist, little research actually evaluates visual representation principles to identify the visual notations most suitable for stakeholders. In this paper, the Physics of Notations framework of Moody is operationalized and utilized to evaluate five different DM visual notations. The results show several points of improvement with regards to these visual notations. Furthermore, the results could show the authors of DM visual notations that well-known visual representation principles need to be adequately taken into account when defining or modifying DM visual notations.
Visual cross-platform analysis (VCPA) is a methodological approach designed to overcome two forms of bias in the social media research literature: first, a bias towards studies of single plat- forms and, second, a bias towards analysis that focuses on text and metrics. VCPA addresses this by providing methods for identifying visual vernaculars, defined as the platform-specific content and style of images that articulate any given social or political issue.
IMAGE
Studying images on social media introduces several challenges that relate to the size of datasets and the different meaning-making grammars of social visuality; or as aptly pointed out by others in the field, it means ‘studying the qualitative on a quantitative scale’. Although cultural analytics provides an automated process through which patterns can be detected in large numbers of images, this methodology doesn’t account for other modalities of the image than the image itself. However, images circulating social media can (and should) be analyzed on the level of their audience as the latter is co-creating the meaning of images. Bridging the study of platform affordances and affect theory, this paper presents a novel methodology that repurposes Facebook Reactions to infer collective attitudes and performative emotional expressions vis á vis images shared on the large Syrian Revolution Network public page (+2M). We found visual patterns that co-occur with certain collective combinations of buttons, displaying how socio-technical features shape the discursive frameworks of online publics.
MULTIFILE
Within the film and theater world, special effects make-up is used to adapt the appearance of actors for visual storytelling. Currently the creation of special effects makeup is a time-consuming process which creates a lot of waste that doesn’t fit in with the goals of a sustainable industry. Combine with the trend of the digitization of the movie and theater industry which require faster and more iterative workflows, the current ways of creating special effects makeup requires changing. Within this project we would like to explore if the traditional way of working can be converted to a digital production process. Our research consists of three parts. Firstly, we would like to explore if a mobile face scanning rig can be used to create digital copies of actors, and such eliminate the need to creates molds. Secondly, we would like to see if digital sculpting can replace the traditional methods of sculpting molds, casts and prosthetics. Here we would like to compare both methods in terms of creativity and time consumption. The third part of our project will be to explore the use of 3D printing for the creation of molds and prosthetics.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
This PD project explores alternative approaches to audiovisual technologies in art and creative practices by reimagining and reinventing marginalized and decommodified devices through Media Archaeology, artistic experimentation, and hands-on technical reinvention. This research employs Media Archaeology to uncover “obsolete” yet artistically relevant technologies and hands-on technical reinvention to adapt these tools for contemporary creative practices. It seeks to develop experimental self-built devices that critically engage with media materiality, exploring alternative aesthetic possibilities through practice-based investigations into the cultural and historical dimensions of media technologies. These developments provide artists with new creative possibilities beyond mainstream commercial standardized tools and infrastructures. A key component of this project is collaborative innovation with artist-run analog film communities, such as Filmwerkplaats. By fostering knowledge exchange and artistic experimentation, this research ensures that reinvented tools remain relevant to both analog film communities and contemporary media art practices. The intended outcomes directly benefit two key groups: • Artist-run film labs gain sustainable methods for evolving their practices, reducing dependence on scarce, out-of-production equipment. • Digital-native artists are introduced to alternative methods for engaging with analog processes and media materiality, expanding their creative toolkit. This collaboration also strengthens art and design education by embedding alternative technological perspectives and research methodologies into curricula, providing students and practitioners with resourceful, sustainable approaches to working with technology. It advocates for a more diverse educational paradigm that incorporates media-technological history and critical reflection on the ideologies of linear technological progress. Ultimately, this research fosters critical discourse on media culture, challenges the dominance of corporate proprietary systems, and promotes innovation, redefining the relationship between creativity and technology.