Abstract: Since the first Oxford Survey of Childhood Cancer’s results were published, people have become more aware of the risks associated with prenatal exposure from diagnostic x rays. As a result, it has since been the subject of many studies. In this review, the results of recent epidemiological studies are summarized. The current international guidelines for diagnostic x-ray examinations were compared to the review. All epidemiological studies starting from 2007 and all relevant international guidelines were included. Apart from one study that involved rhabdomyosarcoma, no statistically significant associations were found between prenatal exposure to x rays and the development of cancer during 2007–2020. Most of the studies were constrained in their design due to too small a cohort or number of cases, minimal x-ray exposure, and/or data obtained from the exposed mothers instead of medical reports. In one of the studies, computed tomography exposure was also included, and this requires more and longer follow-up in successive studies. Most international guidelines are comparable, provide risk coefficients that are quite conservative, and discourage abdominal examinations of pregnant women.
DOCUMENT
BACKGROUND: Visceral obesity is associated with the metabolic syndrome. The metabolic risk differs per ethnicity, but reference values for visceral obesity for body composition analyses using Computed Tomography (CT) scans in the Caucasian population are lacking. Therefore, the aim of this study was to define gender specific reference values for visceral obesity in a Caucasian cohort based upon the association between the amount of visceral adipose tissue (VAT) and markers of increased metabolic risk.METHODS: Visceral Adipose Tissue Area Index (VATI cm 2/m 2) at the level of vertebra L3 was analyzed using CT scans of 416 healthy living kidney donor candidates. The use of antihypertensive drugs and/or statins was used as an indicator for increased metabolic risk. Gender specific cut-off values for VATI with a sensitivity ≥80% were calculated using receiver operating characteristic (ROC) curves. RESULTS: In both men and women who used antihypertensive drugs, statins or both, VATI was higher than in those who did not use these drugs (p ≤ 0.013). In males and females respectively, a value of VATI of ≥38.7 cm 2/m 2 and ≥24.9 cm 2/m 2 was associated with increased metabolic risk with a sensitivity of 80%. ROC analysis showed that VATI was a better predictor of increased metabolic risk than BMI (area under ROC curve (AUC) = 0.702 vs AUC = 0.556 in males and AUC = 0.757 vs AUC = 0.630 in females). CONCLUSION: Gender and ethnicity specific cut-off values for visceral obesity are important in body composition research, although further validation is needed. This study also showed that quantification of VATI is a better predictor for metabolic risk than BMI.
DOCUMENT
Diagnostic reference levels (DRLs) for medical x-ray procedures are being implemented currently in the Netherlands. By order of the Dutch Healthcare Inspectorate, a survey has been conducted among 20 Dutch hospitals to investigate the level of implementation of the Dutch DRLs in current radiological practice. It turns out that hospitals are either well underway in implementing the DRLs or have already done so. However, the DRLs have usually not yet been incorporated in the QAsystem of the department nor in the treatment protocols. It was shown that the amount of radiation used, as far as it was indicated by the hospitals, usually remains below the DRLs. A procedure for comparing dose levels to the DRLs has been prescribed but is not Always followed in practice. This is especially difficult in the case of children, as most general hospitals receive few children. Health Phys. 108(4):462–464; 2015
DOCUMENT
Introduction: Zygomatic fractures can be diagnosed with either computed tomography (CT) or direct digital radiography (DR). The aim of the present study was to assess the effect of CT dose reduction on the preference for facial CT versus DR for accurate diagnosis of isolated zygomatic fractures. Materials and methods: Eight zygomatic fractures were inflicted on four human cadavers with a free fall impactor technique. The cadavers were scanned using eight CT protocols, which were identical except for a systematic decrease in radiation dose per protocol, and one DR protocol. Single axial CT images were displayed alongside a DR image of the same fracture creating a total of 64 dual images for comparison. A total of 54 observers, including radiologists, radiographers and oral and maxillofacial surgeons, made a forced choice for either CT or DR. Results: Forty out of 54 observers (74%) preferred CT over DR (all with P < 0.05). Preference for CT was maintained even when radiation dose reduced from 147.4 mSv to 46.4 mSv (DR dose was 6.9 mSv). Only a single out of all raters preferred DR (P ¼ 0.0003). The remaining 13 observers had no significant preference. Conclusion: This study demonstrates that preference for axial CT over DR is not affected by substantial (~70%) CT dose reduction for the assessment of zygomatico-orbital fractures.
MULTIFILE
Introduction: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice. Methods: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey. Results: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure. Conclusion: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg. Implications for practice: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
MULTIFILE
Patients scheduled for a magnetic resonance imaging (MRI) scan sometimes require screening for ferromagnetic Intra Orbital Foreign Bodies (IOFBs). To assess this, they are required to fill out a screening protocol questionnaire before their scan. If it is established that a patient is at high risk, radiographic imaging is necessary. This review examines literature to evaluate which imaging modality should be used to screen for IOFBs, considering that the eye is highly sensitive to ionising radiation and any dose should be minimised.Method: Several websites and books were searched for information, these were as follows: PubMed, Science Direct, Web of Knowledge and Google Scholar. The terms searched related to IOFB, Ionising radiation, Magnetic Resonance Imaging Safety, Image Quality, Effective Dose, Orbits and X-ray. Thirty five articles were found, several were rejected due to age or irrelevance; twenty eight were eventually accepted. Results: There are several imaging techniques that can be used. Some articles investigated the use of ultrasound for investigation of ferromagnetic IOFBs of the eye and others discussed using ComputedTomography (CT) and X-ray. Some gaps in the literature were identified, mainly that there are no articles which discuss the lowest effective dose while having adequate image quality for orbital imaging.Conclusion: X-ray is the best method to identify IOFBs. The only problem is that there is no research which highlights exposure factors that maintain sufficient image quality for viewing IOFBs and keep the effective dose to the eye As Low As Reasonably Achievable (ALARA).
DOCUMENT
Abstract—A survey about radiation protection in pediatric radiology was conducted among 22 general and seven children’s hospitals in the Netherlands. Questions concerned, for example, child protocols used for CT, fluoroscopy and x-ray imaging, number of images and scans made, radiation doses and measures taken to reduce these, special tools used for children, and quality assurance issues. The answers received from 27 hospitals indicate that radiation protection practices differ considerably between general and children’s hospitals but also between the respective general and children’s hospitals. It is recommended that hospitals consult each other to come up with more uniform best practices. Few hospitals were able to supply doses that can be compared to the national Diagnostic Reference Levels (DRLs). The ones that could be compared exceeded the DRLs in one in five cases, which is more than was expected beforehand.
LINK
Medical imaging practice changed dramatically with the introduction of digital imaging. Although digital imaging has many advantages, it also has made it easier to delete images that are not of diagnostic quality. Mistakes in imaging—from improper patient positioning, patient movement during the examination, and selecting improper equipment—could go undetected when images are deleted. Such an approach would preclude a reject analysis from which valuable lessons could be learned. In the analog days of radiography, saving the rejected films and then analyzing them was common practice among radiographers. In principle, reject analysis can be carried out easier and with better tools (ie, software) in the digital era, provided that rejected images are stored for analysis. Reject analysis and the subsequent lessons learned could reduce the number of repeat images, thus reducing imaging costs and decreasing patient exposure to radiation. The purpose of this study, which was conducted by order of the Dutch Healthcare Inspectorate, was to investigate whether hospitals in the Netherlands store and analyze failed imaging and, if so, to identify the tools used to analyze those images.
DOCUMENT
BACKGROUND: In critically ill patients, muscle loss is associated with adverse outcomes. Raw bioelectrical impedance analysis (BIA) parameters (eg, phase angle [PA] and impedance ratio [IR]) have received attention as potential markers of muscularity, nutrition status, and clinical outcomes. Our objective was to test whether PA and IR could be used to assess low muscularity and predict clinical outcomes.METHODS: Patients (≥18 years) having an abdominal computed tomography (CT) scan and admitted to intensive care underwent multifrequency BIA within 72 hours of scan. CT scans were landmarked at the third lumbar vertebra and analyzed for skeletal muscle cross-sectional area (CSA). CSA ≤170 cm(2) for males and ≤110 cm(2) for females defined low muscularity. The relationship between PA (and IR) and CT muscle CSA was evaluated using multivariate regression and included adjustments for age, sex, body mass index, Charlson Comorbidity Index, and admission type. PA and IR were also evaluated for predicting discharge status using dual-energy X-ray absorptiometry-derived cut-points for low fat-free mass index.RESULTS: Of 171 potentially eligible patients, 71 had BIA and CT scans within 72 hours. Area under the receiver operating characteristic (c-index) curve to predict CT-defined low muscularity was 0.67 (P ≤ .05) for both PA and IR. With covariates added to logistic regression models, PA and IR c-indexes were 0.78 and 0.76 (P < .05), respectively. Low PA and high IR predicted time to live ICU discharge.CONCLUSION: Our study highlights the potential utility of PA and IR as markers to identify patients with low muscularity who may benefit from early and rigorous intervention.
DOCUMENT
Background: A new selective preventive spinal immobilization (PSI) protocol was introduced in the Netherlands. This may have led to an increase in non-immobilized spinal fractures (NISFs) and consequently adverse patient outcomes. Aim: A pilot study was conducted to describe the adverse patient outcomes in NISF of the PSI protocol change and assess the feasibility of a larger effect study. Methods: Retrospective comparative cohort pilot study including records of trauma patients with a presumed spinal injury who were presented at the emergency department of a level 2 trauma center by the emergency medical service (EMS). The pre-period 2013-2014 (strict PSI protocol), was compared to the post-period 2017-2018 (selective PSI protocol). Primary outcomes were the percentage of records with a NISF who had an adverse patient outcome such as neurological injuries and mortality before and after the protocol change. Secondary outcomes were the sample size calculation for a larger study and the feasibility of data collection. Results: 1,147 records were included; 442 pre-period, and 705 post-period. The NISF-prevalence was 10% (95% CI 7-16, n = 19) and 8% (95% CI 6-11, n = 33), respectively. In both periods, no neurological injuries or mortality due to NISF were found, by which calculating a sample size is impossible. Data collection showed to be feasible. Conclusions: No neurological injuries or mortality due to NISF were found in a strict and a selective PSI protocol. Therefore, a larger study is discouraged. Future studies should focus on which patients really profit from PSI and which patients do not.
DOCUMENT