Het RAAK MKB AutoCue project was opgezet om te onderzoeken hoe een fotonische lab-on-a-chip device zonder actieve componenten (lichtbronnen en -detectoren) gekoppeld kan worden aan een uitleesapparaat waar deze actieve componenten wel inzitten.
Het resultaat is een tweetraps systeem waarbij een eerste passieve stap de optische ingang van de chip dicht genoeg in de buurt brengt zodat de tweede actieve stap de finale koppeling kan maken.
Om deze koppeling te kunnen onderzoeken voor veel verschillende opties, is er een demonstrator ontwikkeld die verschillende ontwerpen kan simuleren en in de praktijk kan testen. Deze opstelling zal in het vervolgproject worden gebruikt om nieuwe ontwerpen van de cartridge te testen.
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge.
In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously.
The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.