The flexible deployment of drones in the public domain, is in this article assessed from a legal philosophical perspective. On the basis of theories of Dworkin and Moore the distinction between individual rights and collective security policy goals is discussed. Mobile cameras in the public domain reflect how innovative technological tools challenge public authorities in new ways to balance between privacy and security. Furthermore, the different dimensions of privacy and the distinction between the three types of the value of privacy are reviewed. On the basis of the case study of the Dutch Drones Act, the article concludes that the flexible deployment of mobile cameras in the public domain is not legitimate from a normative perspective. The legal safeguards in the Netherlands are insufficient to protect the value of privacy. Therefore, further restrictions such as prior judicial review should be considered.
LINK
Pokémon Go, Facebook check-ins, Google Maps, public transport apps and especially smartphone apps are increasingly becoming traceable and locatable. As ‘check-in’, features in social media and games grow in popularity they pinpoint users in relation to everything else in the network, making physical context an essential input for online interactions. But what are the practical consequences of the increased proliferation of devices that can determine our location? Could one say that surveillance is already taken for granted as we passively provide our coordinates to others?
MULTIFILE
Background: Follow‑up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patients’ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost‑)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient‑reported cancer worry, self‑rated and overall quality of life and (cost‑)effectiveness. Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they ‑stepwise‑ will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the ‘Breast Cancer Surveillance Decision Aid’ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision‑making is supported by a patient decision aid. Patients are non‑metastasized female primary breast cancer patients (N= 1040) who are curatively treated and start follow‑up care. Patient reported outcomes will be measured at five points in time during two years of follow‑up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patients’ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient‑reported cancer worry (Cancer Worry Scale) and over‑all quality of life (as assessed with EQ‑VAS score). Secondary outcomes include health care costs and resource use, health‑related quality of life (as measured with EQ5D‑5L/SF‑12/EORTC‑QLQ‑C30), risk perception, shared decision‑making, patient satisfaction, societal participation, and cost‑effectiveness. Next, the uptake and appreciation of personalized plans and patients’ experiences of their decision‑making process will be evaluated. Discussion: This study will contribute to insight in the (cost‑)effectiveness of personalized follow‑up care and contributes to development of uniform evidence‑based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.
MULTIFILE
In veel Afrikaanse landen zien we een inperking van de maatschappelijke ruimte (‘civic space’). Deze ruimte is cruciaal om in democratische staten transparantie, vrijheid van meningsuiting en verantwoording van bestuur te realiseren. In een steeds sterke digitaliserende maatschappij wordt toegang tot digitale middelen een mensenrecht. Daar waar regeringen proberen hun burgers en organisaties dat recht tot digitale informatievoorziening en –uitwisselingen te ontnemen komen de Sustainable Development Goals in het gedrang. Doel African Digital Rights Network (ADRN) wil inzicht verkrijgen in de stakeholders ne technologieën die betrokken zijn net het openen of onderdrukken van de online maatschappelijke ruimte (‘civic space’). Het netwerk beoogt bij te dragen aam empowerment van burgers om hun digitale mensenrechten uit te oefenen. Resultaten ADRN heeft een vergelijkende studie van 10 Afrikaanse landen uitgevoerd naar het gebruik van digitale technologieën voor het openen of onderdrukken van de online maatschappelijke ruimte (‘civic space’). Het project heeft onder andere geleidt tot de volgende publicatie: Mapping the Supply of Surveillance Technologies to Africa: Case Studies from Nigeria, Ghana, Morocco, Malawi, and Zambia Looptijd 01 mei 2020 - 20 april 2021 Aanpak ADRN organiseert een netwerk van onderzoekers, analisten, digitale rechtenorganisaties en activisten om de dynamiek van het openen en onderdrukken van de digitale maatschappelijke ruimte in kaart te brengen. Het netwerk bouwt op een interdisciplinaire onderzoeksaanpak o.l.v. het Institute for Development Studies, een vooraanstaand onderzoeksinstituut. Relevantie van het project Het onderzoek leidt tot aanbevelingen voor o.a. beleidsmakers en maatschappelijke organisaties ter bevordering van de digitale maatschappelijke ruimte. Daarnaast worden digitale tools en trainingsmateriaal gefaciliteerd voor het monitoren van ontwikkelingen en dreigingen van de digitale maatschappelijke ruimte. CofinancieringDit onderzoek wordt gefinancierd door UKRI - GCRF Digital Innovation for Development in Africa (DIDA)Meer weten? UKRI GCRF: African Digital Rights Network Website ADRN
The utilization of drones in various industries, such as agriculture, infrastructure inspection, and surveillance, has significantly increased in recent years. However, navigating low-altitude environments poses a challenge due to potential collisions with “unseen” obstacles like power lines and poles, leading to safety concerns and equipment damage. Traditional obstacle avoidance systems often struggle with detecting thin and transparent obstacles, making them ill-suited for scenarios involving power lines, which are essential yet difficult to perceive visually. Together with partners that are active in logistics and safety and security domains, this project proposal aims at conducting feasibility study on advanced obstacle detection and avoidance system for low-flying drones. To that end, the main research question is, “How can AI-enabled, robust and module invisible obstacle avoidance technology can be developed for low-flying drones? During this feasibility study, cutting-edge sensor technologies, such as LiDAR, radar, camera and advanced machine learning algorithms will be investigated to what extent they can be used be to accurately detect “Not easily seen” obstacles in real-time. The successful conclusion of this project will lead to a bigger project that aims to contribute to the advancement of drone safety and operational capabilities in low-altitude environments, opening new possibilities for applications in industries where low-flying drones and obstacle avoidance are critical.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.