In deze lectorale rede beargumenteert Patrick Sins dat inzicht in de relatie tussen tijd en leren noodzakelijk is om het leren van leerlingen te begrijpen en te beïnvloeden. Zo stelt hij dat effectief onderwijs direct afhankelijk is van de tijd die wordt besteed aan doelgericht leren en de tijd die nodig is om te leren. Aan de hand van een model laat hij zien dat het in acht nemen van tijd verschillen in lesopbrengsten kan verklaren. Bovendien wordt het meten van verschillen tussen leerlingen makkelijker. Het is dus hoog tijd om te reflecteren op het belang van tijd. https://www.saxion.nl/binaries/content/assets/onderzoek/meer-onderzoek/vernieuwingsonderwijs/sins_lectorale_rede_its-about-time_2012.pdf
MULTIFILE
Begin dit jaar ontving ik een brief van de belastingdienst, een eerste maning voor het vooruitbetalen van inkomstenbelasting voor het komend jaar. Op zich geen verrassing. Elk jaar word ik, net als duizenden mede-Nederlanders, geacht alvast belasting te betalen over geld dat ik nog moet gaan verdienen. De inhoud van deze brief illustreerde echter toevallig een aantal gedachten over het marketingvak die me sinds enige tijd bezighouden.
LINK
Sinds de eeuwwisseling heeft het gebruik van mental practice (Nederlands: mentale training) en movement imagery (Nederlands: bewegingsvoorstellingen) binnen diverse disciplines in de revalidatie steeds meer aandacht gekregen. Het gebruik van bewegingsvoorstellingen werd daarvoor vooral toegepast in de sport. Mentale training is een complexe interventie. Indien een complexe interventie toegepast gaat worden bij een ‘nieuwe’ doelgroep, zal deze bijgesteld, doorontwikkeld en geëvalueerd moeten worden. De Medical Research Council (MRC) heeft hiervoor een stappenplan ontwikkeld. Onlangs is er een proefschrift verschenen waarbij geprobeerd is aan de hand van de stappen van het MRC-model de transfer vanuit de sport naar de revalidatie te maken bij mensen na een beroerte in de verpleeghuissetting. In dit artikel wordt beschreven hoe het onderzoek heeft plaatsgevonden, welke resultaten bereikt zijn en welke aanbevelingen voor vervolgonderzoek gedaan worden. Eerst wordt kort ingegaan op het gebruik van bewegingsvoorstellingen door sporters.
Blessures zijn één van de grootste problemen in de paralympische sport. Niet alleen is het aantal blessures hoog, maar ook de impact in het dagelijks leven is groot. In gesprekken met de beroepspraktijk (sporters, coaches, Embedded Scientist) komt de urgentie van dit probleem met name naar voren bij rolstoelsporters. In dit geval kan een blessure namelijk een acute bedreiging vormen voor de zelfredzaamheid, omdat zij in het dagelijks leven ook afhankelijk zijn van de rolstoel. Helaas is het voorkomen van blessures op dit moment moeilijk door de verscheidenheid aan blessures en onduidelijkheid over wat de oorzaken van deze blessures zijn. Hierbij speelt de complexiteit van het probleem een grote rol omdat allerlei factoren belangrijk kunnen zijn, zoals onder andere de belasting in het dagelijks leven, mentale aspecten en de slaapkwaliteit van de atleten. In dit project willen we de eerste stappen zetten om te achterhalen wat de risicofactoren zijn voor het oplopen van een overbelastingsblessure in rolstoelsporten. Om dit bereiken stellen we een integrale en data gedreven aanpak voor, waar Artificiële Intelligentie en Data Science een essentiële rol spelen. Op deze manier willen we de invloed van alle aspecten tegelijk bekijken en ook de mogelijke wisselwerkingen tussen de potentiële risicofactoren. In samenwerking met praktijkpartners, kennisinstellingen en bedrijven willen we verkennen wat noodzakelijk is voor onze integrale aanpak van blessurepreventie in rolstoelsporten. De opbrengst van dit project is een ingediende vervolgaanvraag met een goed afgebakende onderzoeksvraag en een sterk consortium. Ook zal een data-infrastructuur worden ontwikkeld, die gebruiksvriendelijk is voor de rolstoelsporter en de data gedreven aanpak naar blessurepreventie mogelijk maakt.
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar. Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden. Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.
Big data spelen een steeds grotere rol in de (semi)professionele sport. De hoeveelheid gegevens die opgeslagen wordt, groeit exponentieel. Sportbegeleiders (coaches, inspanningsfysiologen, sportfysiotherapeuten en sportartsen) maken steeds vaker gebruik van sensoren om sporters te monitoren. Tijdens trainingen en wedstrijden worden de hartslagen, afgelegde afstanden, snelheden en versnellingen van sporters gemeten. Het analyseren van deze data vormt een grote uitdaging voor het begeleidingsteam van de sporters. Sportbegeleiders willen big data graag inzetten om meer grip te krijgen op sportblessures. Blessures kunnen namelijk desastreuze gevolgen hebben voor teamprestaties en de carrière van (semi)professionele sporters. In totaal stopt maar liefst 33% van de topsporters door blessures met hun sportloopbaan. Daarnaast is uitval door blessures een belangrijke oorzaak van stagnatie van talentontwikkeling. Het lectoraat Sportzorg van de Hogeschool van Amsterdam heeft veel expertise op het gebied van blessurepreventie in de sport. Sportbegeleiders hebben het lectoraat Sportzorg benaderd om antwoord te krijgen op de onderzoeksvraag: Wat zijn op data gebaseerde indicatoren om sportblessures te voorspellen? Deze onderzoeksvraagstelling is opgesplitst in de volgende deelvragen: 1. Hoe kan met sensoren relevante data van sporters verzameld worden om de sportbelasting in kaart te brengen? 2. Welke parameters kunnen blessures voorspellen? 3. Hoe kunnen deze parameters op betekenisvolle en eenvoudige wijze naar sportbegeleiders en sporters teruggekoppeld worden? Het project resulteert in de volgende projectresultaten: - Een overzicht van nauwkeurige en gebruiksvriendelijke sensoren om sportbelasting in kaart te brengen - Een overzicht van relevante parameters die blessures kunnen voorspellen - Een online tool dat per sporter aangeeft of de sporter wel of niet training- of wedstrijdfit is Bij dit project zijn de volgende organisaties betrokken: Hogeschool van Amsterdam, Universiteit Leiden, VUmc, Rijksuniversiteit Groningen (RuG), Amsterdam Institute of Sport Science (AISS), Johan Sports, Centrum voor Topsport en Onderwijs (CTO) Amsterdam, Koninklijke Nederlandse Voetbalbond (KNVB), de Nederlandse Vereniging voor Fysiotherapie in de Sport (NVFS), VV Noordwijk (voetbalclub) en Black Eagles (basketbalclub).