In het boek komen 40 experts aan het woord, die in duidelijke taal uitleggen wat AI is, en welke vragen, uitdagingen en kansen de technologie met zich meebrengt.
DOCUMENT
Editorial on the Research Topic "Leveraging artificial intelligence and open science for toxicological risk assessment"
LINK
Poster KIM voor de ECR is nu online te zien via EPOS: https://epos.myesr.org/poster/esr/ecr2022/C-16092 posternummer: C-16092, ECR 2022 Purpose Artificial Intelligence (AI) has developed at high speed the last few years and will substantially change various disciplines (1,2). These changes are also noticeable in the field of radiology, nuclear medicine and radiotherapy. However, the focus of attention has mainly been on the radiologist profession, whereas the role of the radiographer has been largely ignored (3). As long as AI for radiology was focused on image recognition and diagnosis, the little attention for the radiographer might be justifiable. But with AI becoming more and more a part of the workflow management, treatment planning and image reconstruction for example, the work of the radiographer will change. However, their training (courses Medical Imaging and Radiotherapeutic Techniques) hardly contain any AI education. Radiographers in the Netherlands are therefore not prepared for changes that will come with the introduction of AI into everyday work.
LINK
Information about a research study on how data science and artificial intelligence can contribute to modern education aimed at identifying and developing talents of students. De presentatie is gepubliceerd onder de titel: Future skills : and whre to find them?
DOCUMENT
In the book, 40 experts speak, who explain in clear language what AI is, and what questions, challenges and opportunities the technology brings.
DOCUMENT
Artificial Intelligence (AI) has changed radiology substantially in the last years, where the focus of attention has mainly been on the radiologist. However, the radiographer’s role has been largely ignored even though AI is also affecting for example patient positioning, treatment planning and image reconstruction: tasks that are typically carried out by radiographers (and RTTs). Radiographers are currently not prepared for the changes in their profession that will come with the introduction of AI into everyday work.
DOCUMENT
Artificial Intelligence (AI) is increasingly shaping the way we work, live, and interact, leading to significant developments across various sectors of industry, including media, finance, business services, retail and education. In recent years, numerous high-level principles and guidelines for ‘responsible’ or ‘ethical’ AI have been formulated. However, these theoretical efforts often fall short when it comes to addressing the practical challenges of implementing AI in real-world contexts: Responsible Applied AI. The one-day workshop on Responsible Applied Artificial InTelligence (RAAIT) at HHAI 2024: Hybrid Human AI Systems for the Social Good in Malmö, Sweden, brought together researchers studying various dimensions of Responsible AI in practice.This was the second RAAIT workshop, following the first edition at the 2023 European Conference on Artificial Intelligence (ECAI) in Krakow, Poland.
MULTIFILE
De arbeidsmarkt is continu in ontwikkeling, leidend tot een steeds veranderende vraag naar competenties en banen. Dit vraagt naast beroepsgerichte vaardigheden en kennis over veerkracht en wendbaarheid van professionals. Van de student wordt daarom verwacht dat die zich ontwikkeld in zelfgereguleerd (ZGL) leren. ZGL gaat over regie van het eigen leerproces: studenten bepalen zelf hoe tot leerresultaten te komen, deze te evalueren en sturen het leerproces zelf bij. Voor opleidingen is het de vraag hoe ze ZGL kunnen begeleiden en bevorderen. Dit behoeft inzicht in leergedrag, patronen hierin en bewustzijn over hoe deze inzichten gebruikt kunnen worden om ZGL te ondersteunen en het leerproces te begeleiden. In dit onderzoek is geïnventariseerd of de data die studenten in de elektronische leeromgeving (ELO) achterlaten een indicatie kan geven over het leerproces en ZGL van de student. Om de ingewikkelde patronen uit de data te halen, zijn de data uit de ELO met behulp van AItechnieken geanalyseerd. Hiermee kon het leerproces van studenten in verschillende categorieën worden onderverdeeld. De categorieën geven een eerste indicatie over het ZGL van de student. Verder onderzoek is benodigd, ook om te onderzoeken wat dit betekent voor de ondersteuning van studenten in hun leerproces.
DOCUMENT
The healthcare sector has been confronted with rapidly rising healthcare costs and a shortage of medical staff. At the same time, the field of Artificial Intelligence (AI) has emerged as a promising area of research, offering potential benefits for healthcare. Despite the potential of AI to support healthcare, its widespread implementation, especially in healthcare, remains limited. One possible factor contributing to that is the lack of trust in AI algorithms among healthcare professionals. Previous studies have indicated that explainability plays a crucial role in establishing trust in AI systems. This study aims to explore trust in AI and its connection to explainability in a medical setting. A rapid review was conducted to provide an overview of the existing knowledge and research on trust and explainability. Building upon these insights, a dashboard interface was developed to present the output of an AI-based decision-support tool along with explanatory information, with the aim of enhancing explainability of the AI for healthcare professionals. To investigate the impact of the dashboard and its explanations on healthcare professionals, an exploratory case study was conducted. The study encompassed an assessment of participants’ trust in the AI system, their perception of its explainability, as well as their evaluations of perceived ease of use and perceived usefulness. The initial findings from the case study indicate a positive correlation between perceived explainability and trust in the AI system. Our preliminary findings suggest that enhancing the explainability of AI systems could increase trust among healthcare professionals. This may contribute to an increased acceptance and adoption of AI in healthcare. However, a more elaborate experiment with the dashboard is essential.
LINK
This article examines how collaborative design practices in higher education are reshaped through postdigital entanglement with generative artificial intelligence (GenAI). We collectively explore how co-design, an inclusive, iterative, and relational approach to educational design and transformation, expands in meaning, practice, and ontology when GenAI is approached as a collaborator. The article brings together 19 authors and three open reviewers to engage with postdigital inquiry, structured in three parts: (1) a review of literature on co-design, GenAI, and postdigital theory; (2) 11 situated contributions from educators, researchers, and designers worldwide, each offering practice-based accounts of co-design with GenAI; and (3) an explorative discussion of implications for higher education designs and futures. Across these sections, we show how GenAI unsettles assumptions of collaboration, knowing, and agency, foregrounding co-design as a site of ongoing material, ethical, and epistemic negotiation. We argue that postdigital co-design with GenAI reframes educational design as a collective practice of imagining, contesting, and shaping futures that extend beyond human knowing.
MULTIFILE