Hoe meer data er beschikbaar komt, des te meer de beslissing verbeterd kan worden. Hoe beter (slimmer) de beslissing wordt gemaakt, des te meer waarde de beslissing heeft voor uw organisatie. Dit wordt het data-netwerk-effect genoemd. Vaak wordt het data-netwerk-effect gerealiseerd door het gebruik van data van onbewuste data-donoren. In dit artikel wordt een ander soort data-donor belicht: de bewuste data-donor.
De mkb-accountant heeft moeite bij te blijven op het gebied van automatisering, digitalisering en data-analyse. Na inventarisatie van knelpunten hebben onderzoekers van drie hogescholen twee tools ontwikkeldom zulke uitdagingen op te lossen. Presentatie van een tool die mkb-accountants kan helpen stappen te zettenop het gebied van digitale dienstverlening.
Dit project poogt een bijdrage te leveren aan het versterken van “de kennisketen van de gastvrijheidseconomie” middels de volgende projectdoelstellingen: • SWOT-analyse van huidige situatie, vanuit verschillende stakeholderperspectieven: kijkend vanuit de ontwikkelopgaves die men ziet, aan welke data over de customer journey is behoefte (inventarisatie)? Wat zijn de bijbehorende sterktes, zwaktes, kansen en bedreigingen (analyse)? • Versterken van de kennisketen via: hoe kunnen we kennisketen versterken met nieuwe technieken en door slim organiseren? • Een overzicht van strategische opties: welke strategische opties zijn er om 1.) sterktes te benutten om kansen te pakken en bedreigingen af te wenden en 2.) zwaktes op te lossen door kansen te pakken en gevaren te voorkomen die met bedreigingen meekomen • Input leveren voor 2.0 versie van het manifest van Gastvrij Overijssel en de beoogde oprichting van een “Data Hub” (waarvoor nog geen officiële werktitel) In de opvolgende hoofdstukken en paragrafen gaan we in op de aanpak (hoofdstuk 2) en de uitkomsten (hoofdstuk 3).
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
De dataverzamelingsmethodiek ‘verhalen vangen’ (afgeleid is van de methodiek storytelling) die voor het project “Samenwerken met ouders: hoe doe je dat?” is gekozen, is in de praktijk een deel van de oplossing voor de soms moeizame samenwerking tussen ouders en leerkrachten. De verhalen van leerkrachten en ouders zeggen veel over de individuele beleving van de samenwerking. Analyse van de verhalen geeft inzicht in de werkzame factoren en de competenties die een leerkracht nodig heeft om met ouders samen te werken. Maar, de impact van de verhalen is groter. Door aan dit project deel te nemen hebben leerkrachten (en ouders) leren luisteren. Iets wat op het oog vanzelfsprekend en eenvoudig lijkt, bleek in de praktijk verrassend lastig. Het oprecht luisteren naar ouders bleek voor veel leerkrachten een nieuwe en leerzame ervaring. Deze aanpak heeft veel scholen aangesproken. Deze laagdrempelige manier van data verzamelen bleek voor veel schooldirecteuren, leerkrachten en ouders een eye opener. Wij merken dat de methodiek relatief arbeidsintensief en dus duur is omdat alle gesprekken tot nu toe worden opgenomen en getranscribeerd. Uit deze transcripten worden de verhalen van ouders, leerkrachten en kinderen gedestilleerd. Om te kunnen voldoen aan de vraag van scholen om getraind te worden in ‘verhalen vangen’ en dus beter luisteren, willen wij de methodiek minder arbeidsintensief maken. We willen verkennen welke mogelijkheden er zowel inhoudelijk als technisch zijn om de methodiek, met behoud van alle waardevolle gesprekstechnieken, efficiënter te kunnen aanbieden.
Aanleiding: De belangstelling voor gezonde en veilige voeding is groot. Bij de gezondheidseffecten van voeding spelen de darmen een cruciale rol. Verschillende soorten bedrijven hebben behoefte aan natuurgetrouwe testmodellen om de effecten van voeding op de darmen te bestuderen. Ze zijn vooral op zoek naar modellen waarvan de uitkomsten direct vertaalbaar zijn naar het doelorganisme (de mens of bijvoorbeeld het varken) en die niet gebruikmaken van kostbare en maatschappelijke beladen dierproeven. Doelstelling Het project 2-REAL-GUTS heeft als doel om twee innovatieve dierproefvrije darmmodellen geschikt te maken voor onderzoek naar voedingsconcepten en -ingrediënten. De twee darmmodellen die worden toegepast zijn darmorganoïden, minidarmorgaantjes bestaande uit stamcellen, en darmexplants bestaande uit hele stukjes darm verkregen uit relevante organismen. Beide modellen hebben potentieel heel uitgebreide toepassingsmogelijkheden en hebben ook grote voordelen ten opzichte van de huidige veelgebruikte cellijnen, omdat ze meerdere in de darm aanwezige celtypen bevatten en uit verschillende specifieke darmregio's te verkrijgen zijn. Gezamenlijk gaan de partners werken aan: 1) het aanpassen van de kweekomstandigheden zodat darmmodellen geschikt worden om de vragen van partners te beantwoorden; 2) het vaststellen van de toepassingsmogelijkheden van de darmmodellen door verschillende stoffen en producten te testen. Beoogde resultaten Kennisconferenties, publicaties en exploitatie van de modellen zullen zorgen voor het verspreiden van de opgedane kennis. Omdat het project gebruikmaakt van moderne, op de toekomst gerichte laboratoriumtechnieken (kweekmethoden met stamcellen en vitaal weefsel, moleculaire analyses en microscopie), leent het zich uitstekend om geïmplementeerd te worden in het hbo-onderwijs. Als spin-off zal het project dan ook voorzien in een specifieke, voor Nederland unieke hbo-minor op het gebied van stamcel- en aanverwante technologie (zoals organ-on-a-chiptechnologie).