To adequately deal with the challenges faced within residential care for older people, such as the increasing complexity of care and a call for more person-centred practices, it is important that health care providers learn from their work. This study investigates both the nature of learning, among staff and students working within care for older people, and how workplace learning can be promoted and researched. During a longitudinal study within a nursing home, participatory and democratic research methods were used to collaborate with stakeholders to improve the quality of care and to promote learning in the workplace. The rich descriptions of these processes show that workplace learning is a complex phenomenon. It arises continuously in reciprocal relationship with all those present through which both individuals and environment change and co-evolve enabling enlargement of the space for possible action. This complexity perspective on learning refines and expands conventional beliefs about workplace learning and has implications for advancing and researching learning. It explains that research on workplace learning is itself a form of learning that is aimed at promoting and accelerating learning. Such research requires dialogic and creative methods. This study illustrates that workplace learning has the potential to develop new shared values and ways of working, but that such processes and outcomes are difficult to control. It offers inspiration for educators, supervisors, managers and researchers as to promoting conditions that embrace complexity and provides insight into the role and position of self in such processes.
DOCUMENT
poster voor de EuSoMII Annual Meeting in Pisa, Italië in oktober 2023. PURPOSE & LEARNING OBJECTIVE Artificial Intelligence (AI) technologies are gaining popularity for their ability to autonomously perform tasks and mimic human reasoning [1, 2]. Especially within the medical industry, the implementation of AI solutions has seen an increasing pace [3]. However, the field of radiology is not yet transformed with the promised value of AI, as knowledge on the effective use and implementation of AI is falling behind due to a number of causes: 1) Reactive/passive modes of learning are dominant 2) Existing developments are fragmented 3) Lack of expertise and differing perspectives 4) Lack of effective learning space Learning communities can help overcome these problems and address the complexities that come with human-technology configurations [4]. As the impact of a technology is dependent on its social management and implementation processes [5], our research question then becomes: How do we design, configure, and manage a Learning Community to maximize the impact of AI solutions in medicine?
DOCUMENT
From the article: "The educational domain is momentarily witnessing the emergence of learning analytics – a form of data analytics within educational institutes. Implementation of learning analytics tools, however, is not a trivial process. This research-in-progress focuses on the experimental implementation of a learning analytics tool in the virtual learning environment and educational processes of a case organization – a major Dutch university of applied sciences. The experiment is performed in two phases: the first phase led to insights in the dynamics associated with implementing such tool in a practical setting. The second – yet to be conducted – phase will provide insights in the use of pedagogical interventions based on learning analytics. In the first phase, several technical issues emerged, as well as the need to include more data (sources) in order to get a more complete picture of actual learning behavior. Moreover, self-selection bias is identified as a potential threat to future learning analytics endeavors when data collection and analysis requires learners to opt in."
DOCUMENT
The results will be consensus between departments of physiotherapy universities of allied health care about learning outcomes CommunicationThere is no consensus between Dutch Physiotherapy departments on learning outcome of bachelors
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The pressure on the European health care system is increasing considerably: more elderly people and patients with chronic diseases in need of (rehabilitation) care, a diminishing work force and health care costs continuing to rise. Several measures to counteract this are proposed, such as reduction of the length of stay in hospitals or rehabilitation centres by improving interprofessional and person-centred collaboration between health and social care professionals. Although there is a lot of attention for interprofessional education and collaborative practice (IPECP), the consortium senses a gap between competence levels of future professionals and the levels needed in rehabilitation practice. Therefore, the transfer from tertiary education to practice concerning IPECP in rehabilitation is the central theme of the project. Regional bonds between higher education institutions and rehabilitation centres will be strengthened in order to align IPECP. On the one hand we deliver a set of basic and advanced modules on functioning according to the WHO’s International Classification of Functioning, Disability and Health and a set of (assessment) tools on interprofessional skills training. Also, applications of this theory in promising approaches, both in education and in rehabilitation practice, are regionally being piloted and adapted for use in other regions. Field visits by professionals from practice to exchange experiences is included in this work package. We aim to deliver a range of learning materials, from modules on theory to guidelines on how to set up and run a student-run interprofessional learning ward in a rehabilitation centre. All tested outputs will be published on the INPRO-website and made available to be implemented in the core curricula in tertiary education and for lifelong learning in health care practice. This will ultimately contribute to improve functioning and health outcomes and quality of life of patients in rehabilitation centres and beyond.