The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
DOCUMENT
In line, online, off the grid contributes to the discussions on evaluation of doctoral projects in the arts. The title of the book refers to the challenging variety of artistic research projects. Some projects are easily in line with the degree requirements, whereas others might include elements that complicate the evaluation process both conceptually and practically: unstable online spaces, ephemeral processes, or events realised in remote locations, completely off the grid. The book embraces this challenging but also desirable variety through four cases and a selection of invited reflections. The mix of Finnish and English in this book reminds the reader of the co-existence of several modes of articulation that all parties involved need to deal with.
DOCUMENT
There is an ongoing transition towards renewable energy sources in order to combat climate change. National power grids are suffering due to the rapid introduction of new energy sources and have other disadvantages. Local Energy Systems (LESs) are a beneficial example of an off-grid energy systems that can aid the energy transition. LESs are community driven and require participating and steering members. This can be achieved through empowering end-users to become active participants or steerers. End-users can be empowered to become an active participant through engagement with energy management activities. This does not work for empowering to steer, which begs the question, how to empower end-users or participants to become steerers in Local Energy Systems. Through a literature review this study explores the importance of establishing a group containing steerers with diverse skills, strong leadership, and engagement with the environment and community. Additionally, this study identifies the strategy that empowers end-users to steer. Which is training technological and managemental skills; and training capabilities in establishing relations with local participants and intermediary organisations. To apply these findings more precisely a secondary analysis is conducted on a survey with 599 participants. The original study researched willingness to participate in LESs, however the secondary analysis establishes three important factors to predict willingness to steer. These are energy independence, community trust, and community resistance. Additionally, men with a high level of education are most willing to become steerers per default, thus different demographics generally require more empowerment.
DOCUMENT
Electrification of transportation, communication, working and living continues worldwide. Televisions, telephones, servers are an important part of everyday life. These loads and most sustainable sources as well, have one thing in common: Direct Current. The Dutch research and educational programme ‘DC – road to its full potential’ studies the impact of feeding these appliances from a DC grid. An improvement in energy efficiency is expected, other benefits are unknown and practical considerations are needed to come to a proper comparison with an AC grid. This paper starts with a brief introduction of the programme and its first stages. These stages encompass firstly the commissioning, selection and implementation of a safe and user friendly testing facility, to compare performance of domestic appliances when powered with AC and DC. Secondly, the relationship between the DC-testing facility and existing modeling and simulation assignments is explained. Thirdly, first results are discussed in a broad sense. An improved energy efficiency of 3% to 5% is already demonstrated for domestic appliances. That opens up questions for the performance of a domestic DC system as a whole. The paper then ends with proposed minor changes in the programme and guidelines for future projects. These changes encompass further studying of domestic appliances for product-development purposes, leaving less means for new and costly high-power testing facilities. Possible gains are 1) material and component savings 2) simpler and cheaper exteriors 3) stable and safe in-house infrastructure 4) whilst combined with local sustainable generation. That is the road ahead. 10.1109/DUE.2014.6827758
DOCUMENT
Lectorale redeboekje naar aanleiding van de intrede in het lectoraat Systeemintegratie in de energietransitie
MULTIFILE
Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.
DOCUMENT
Om de binnenstad tegen hitte en wateroverlast te beschermen zijn er veel meer bomen nodig. Als natuurlijke airco's zorgen ze voor afkoeling door schaduw en verdamping en vangen ze bovendien veel water op. Maar er is één probleem: al die wortels passen nauwelijks in de volle bodem van de binnenstad. In dit onderzoek gingen we daarom op zoek naar een boom zonder wortels.
LINK
Bij het Erfgoedlab Hanze ontmoeten de erfgoedpraktijk, onderwijs en studenten elkaar. Er worden opdrachten beschikbaar gesteld (cases en kennisvragen) en er worden excursies en lezingen georganiseerd. In deze bundel staan de projecten, activiteiten, opbrengsten en publicaties beschreven.
DOCUMENT
To reduce greenhouse gas emissions, countries around the world are pursuing electrification policies. In residential areas, electrification will increase electricity supply and demand, which is expected to increase grid congestion at a faster rate than grids can be reinforced. Battery energy storage (BES) has the potential to reduce grid congestion and defer grid reinforcement, thus supporting the energy transition. But, BES could equally exacerbate grid congestion. This leads to the question: What are the trade-offs between different battery control strategies, considering battery performance and battery grid impacts? This paper addresses this question using the battery energy storage evaluation method (BESEM), which interlinks a BES model with an electricity grid model to simulate the interactions between these two systems. In this paper, the BESEM is applied to a case study, wherein the relative effects of different BES control strategies are compared. The results from this case study indicate that batteries can reduce grid congestion if they are passively controlled (i.e., constraining battery power) or actively controlled (i.e., overriding normal battery operations). Using batteries to reduce congestion was found to reduce the primary benefits provided by the batteries to the battery owners, but could increase secondary benefits. Further, passive battery controls were found to be nearly as effective as active battery controls at reducing grid congestion in certain situations. These findings indicate that the trade-offs between different battery control strategies are not always obvious, and should be evaluated using a method like the BESEM.
DOCUMENT