Bird strikes, a risk factor in the aviation industry, are a common problem in certain states of the USA, while they are extremely rare in other states. Similarly, the seasonal distribution of bird strikes is not proportional. This situation poses an unfair situation in the aviation insurance of airline companies in terms of routes taken. The current study, detecting a literature gap related to the principal-agent problem within the aviation sector, evaluates the possible differences in aviation companies' insurance costs, assuming bird strikes are spatially and temporally analyzed in the US, and airline companies are provided with complete information regarding bird-strikes. In this research, QGIS software served in spatial model mappings. In terms of the threshold value, the study results show that making bird-strike insurance aircraft in twenty-one states which were below the threshold value increased the aviation costs of these airline companies, while in the remaining twenty-nine states, non-insurance raised the cost. In this context, as of 2022, it has been determined that not paying an extra premium for bird strikes in twenty-one states below the threshold value will create efficiency, while expending an above-average insurance premium in twenty-nine states and the District of Columbia above the threshold value will create efficiency. The research seeks to answer the following question: Is it fair for airlines operating on routes with low or high bird strike risks to pay the same amount of insurance cost?
DOCUMENT
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT