Background and aim: Moderate preterm (MP) birth is associated with an increased risk of developmental problems. However, post-discharge support for this group is scarce. The aim of this study was to evaluate the feasibility of a post-discharge parenting program (TOP program) for MP infants. Three feasibility dimensions were evaluated (1) recruitment capability and compliance, (2) intervention acceptability, and (3) limited efficacy testing. Methods: A group of MP infants with a gestational age (GA) between 320/7‐346/7 weeks and their parents received six home visits by a TOP interventionist until 6 months corrected age (CA). A pre-posttest intervention design with quantitative and qualitative measures was used. Recruitment capability and compliance, acceptability, and satisfaction with the intervention were evaluated using a questionnaire, checklists, interviews, and a focus group. Infant socio-emotional development, parental distress, self-efficacy, and reflective functioning were measured with questionnaires. Observation measurements were used for infant motor development and parental sensitivity. Results: Thirty-two families completed the six home visits. The satisfaction rate (scale 0–10) was remarkably high (Mean 9.4, range: 8–10). Parents reported that the program was suitable, enhanced their understanding of their infants' developmental needs, and increased their self-efficacy. The infants showed age-appropriate motor and socio-emotional development post-intervention. Parental self-efficacy, reflective functioning, and sensitivity improved from pre to post intervention, with small to large effect sizes. Conclusion: The study demonstrated high compliance, acceptability, and satisfaction with the TOP program for MP infants with promising infant and parent outcomes. This study contributes to the preparatory work prior to a larger scale evaluation and dissemination.
Just-in-time adaptive intervention (JITAI) has gained attention recently and previous studies have indicated that it is an effective strategy in the field of mobile healthcare intervention. Identifying the right moment for the intervention is a crucial component. In this paper the reinforcement learning (RL) technique has been used in a smartphone exercise application to promote physical activity. This RL model determines the ‘right’ time to deliver a restricted number of notifications adaptively, with respect to users’ temporary context information (i.e., time and calendar). A four-week trial study was conducted to examine the feasibility of our model with real target users. JITAI reminders were sent by the RL model in the fourth week of the intervention, while the participants could only access the app’s other functionalities during the first 3 weeks. Eleven target users registered for this study, and the data from 7 participants using the application for 4 weeks and receiving the intervening reminders were analyzed. Not only were the reaction behaviors of users after receiving the reminders analyzed from the application data, but the user experience with the reminders was also explored in a questionnaire and exit interviews. The results show that 83.3% reminders sent at adaptive moments were able to elicit user reaction within 50 min, and 66.7% of physical activities in the intervention week were performed within 5 h of the delivery of a reminder. Our findings indicated the usability of the RL model, while the timing of the moments to deliver reminders can be further improved based on lessons learned.
BACKGROUND: Self-monitoring of physical activity (PA) using an accelerometer is a promising intervention to stimulate PA after hospital discharge.OBJECTIVE: This study aimed to evaluate the feasibility of PA self-monitoring after discharge in patients who have undergone gastrointestinal or lung cancer surgery.METHODS: A mixed methods study was conducted in which 41 patients with cancer scheduled for lobectomy, esophageal resection, or hyperthermic intraperitoneal chemotherapy were included. Preoperatively, patients received an ankle-worn accelerometer and the corresponding mobile health app to familiarize themselves with its use. The use was continued for up to 6 weeks after surgery. Feasibility criteria related to the study procedures, the System Usability Scale, and user experiences were established. In addition, 6 patients were selected to participate in semistructured interviews.RESULTS: The percentage of patients willing to participate in the study (68/90, 76%) and the final participation rate (57/90, 63%) were considered good. The retention rate was acceptable (41/57, 72%), whereas the rate of missing accelerometer data was relatively high (31%). The mean System Usability Scale score was good (77.3). Interviewed patients mentioned that the accelerometer and app were easy to use, motivated them to be more physically active, and provided postdischarge support. The technical shortcomings and comfort of the ankle straps should be improved.CONCLUSIONS: Self-monitoring of PA after discharge appears to be feasible based on good system usability and predominantly positive user experiences in patients with cancer after lobectomy, esophageal resection, or hyperthermic intraperitoneal chemotherapy. Solving technical problems and improving the comfort of the ankle strap may reduce the number of dropouts and missing data in clinical use and follow-up studies.
The focus of this project is on improving the resilience of hospitality Small and Medium Enterprises (SMEs) by enabling them to take advantage of digitalization tools and data analytics in particular. Hospitality SMEs play an important role in their local community but are vulnerable to shifts in demand. Due to a lack of resources (time, finance, and sometimes knowledge), they do not have sufficient access to data analytics tools that are typically available to larger organizations. The purpose of this project is therefore to develop a prototype infrastructure or ecosystem showcasing how Dutch hospitality SMEs can develop their data analytic capability in such a way that they increase their resilience to shifts in demand. The one year exploration period will be used to assess the feasibility of such an infrastructure and will address technological aspects (e.g. kind of technological platform), process aspects (e.g. prerequisites for collaboration such as confidentiality and safety of data), knowledge aspects (e.g. what knowledge of data analytics do SMEs need and through what medium), and organizational aspects (what kind of cooperation form is necessary and how should it be financed).
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.