A previous paper published in this journal proposed a model for evaluating the location of fingermarks on two-dimensional items (de Ronde, van Aken, de Puit and de Poot (2019)). In this paper, we apply the proposed model to a dataset consisting of letters to test whether the activity of writing a letter can be distinguished from the alternative activity of reading a letter based on the location of the fingermarks on the letters. An experiment was conducted in which participants were asked to read a letter and write a letter as separate activities on A4- and A5-sized papers. The fingermarks on the letters were visualized, and the resulting images were transformed into grid representations. A binary classification model was used to classify the letters into the activities of reading and writing based on the location of the fingermarks in the grid representations. Furthermore, the limitations of the model were studied by testing the influence of the length of the letter, the right- or left-handedness of the donor and the size of the paper with an additional activity of folding the paper. The results show that the model can predict the activities of reading or writing a letter based on the fingermark locations on A4-sized letters of right-handed donors with 98 % accuracy. Additionally, the length of the written letter and the handedness of the donor did not influence the performance of the classification model. Changing the size of the letters and adding an activity of folding the paper after writing on it decreased the model’s accuracy. Expanding the training set with part of this new set had a positive influence on the model’s accuracy. The results demonstrate that the model proposed by de Ronde, van Aken, de Puit and de Poot (2019) can indeed be applied to other two-dimensional items on which the disputed activities would be expected to lead to different fingermark locations. Moreover, we show that the location of fingermarks on letters provides valuable information about the activity that is carried out.
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.