Collaboratively editing game worlds and the underlying asset version management techniques present us with many challenges when using a traditional Version Control System (VCS). This paper suggests a new method that will aid in the tracking, branching, and selection of asset versions within a game development pipeline. A prototype has been developed which demonstrated im-provements in both productivity and usability providing greater visibility of incremental asset changes and alterations to their relationships which equated to approximately a 30% better user experience when compared to an existing industry VCS.
DOCUMENT
Design and development practitioners such as those in game development often have difficulty comprehending and adhering to the European General Data Protection Regulation (GDPR), especially when designing in a private sensitive way. Inadequate understanding of how to apply the GDPR in the game development process can lead to one of two consequences: 1. inadvertently violating the GDPR with sizeable fines as potential penalties; or 2. avoiding the use of user data entirely. In this paper, we present our work on designing and evaluating the “GDPR Pitstop tool”, a gamified questionnaire developed to empower game developers and designers to increase legal awareness of GDPR laws in a relatable and accessible manner. The GDPR Pitstop tool was developed with a user-centered approach and in close contact with stakeholders, including practitioners from game development, legal experts and communication and design experts. Three design choices worked for this target group: 1. Careful crafting of the language of the questions; 2. a flexible structure; and 3. a playful design. By combining these three elements into the GDPR Pitstop tool, GDPR awareness within the gaming industry can be improved upon and game developers and designers can be empowered to use user data in a GDPR compliant manner. Additionally, this approach can be scaled to confront other tricky issues faced by design professionals such as privacy by design.
LINK
The research goal of this dissertation is to make configurational HRM usable for science and practice by developing a simulation model and serious game. These tools offer HRM professionals the opportunity to design a multiyear HRM configuration that shapes employee behaviour, while enabling HRM research to get access to a level of detail that was not achieved earlier, contributing to the current state of the art knowledge on strategic HRM. To shape employee behavior in such a way that it contributes to overarching organizational goals, organizations often deploy a set of human resource management (HRM) practices. If the set of individual HRM-practices is designed correctly, they amplify each other in shaping the desired behavior. However, while there is wide agreement on the importance of combining HRM-practices in a configuration that reflects the organizational strategy, we notice a lack of consensus on which HRM-practices need to be combined given a specific strategic goal and organizational starting point. Furthermore, we did not find an agreement on how to design HRM configurations that shape the desired employee behavior within organizations in multiple years. As a result, HRM professionals that design HRM configurations are left empty handed. While the configurational approach has the potential to provide new insight on how HRM shapes employees’ behavior, applying the configurational mode of theorizing to HRM remains challenging. We explain this challenge by the level of theoretical and practical detail that is needed, by the application of the holistic principle when studying HRM configurations, and due to methodological issues. Traditional methods do not align to the dynamic assumptions and the large number of variables included in configurational HRM. In this dissertation we pose that the time is ripe to unlock the deserved value of configurational HRM for theory and practice. We do so by specifying the underlying assumptions and dynamic implications of the configurational mode of theorizing in HRM, and by defining and adding the needed level of detail. In the current research, configurational HRM is made applicable with the use of a simulation model and serious game. -172- Five sequential steps are taken to make configurational HRM applicable. Firstly, key principles of configurational HRM are identified. Secondly, to ground the simulation we look at the manifestation of ideal type HRM configurations in theory and practice. Thirdly, we collect the solidified practical knowledge of HRM professionals on the alignment of HRM-practices. Fourthly, an initial simulation model is created and tested. And finally, we solidified the simulation model for practice and research by implementing it in a serious game for HRM professionals. Taking these five steps, we have specified configurational HRM to an unprecedented level of detail that allows us to address its complexity empirically and theoretically. We claim that with the results of this research we have opened the scientific and empirical “black box” of configurational HRM. Furthermore, the simulation model and serious game provides HRM professionals with a tool to design firm specific HRM configurations in an interactive and fun way. While prior studies did already acknowledge the importance of alignment when designing HRM, the simulation model and serious game specify the general concept of alignment to a level at which HRM professionals and researchers can start selecting, designing, implementing and researching HRM configurations. The tools provide HRM professionals with a method to grasp, maneuver through the complexity of, and explore the implementation of multi-year firm specific HRM.
MULTIFILE
The project’s aim is to foster resilient learning environments, lessen early school leaving, and give European children (ages 4 -6) a good start in their education while providing and advancing technical skills in working with technology that will serve them well in life. For this purpose, the partnership has developed age appropriate ICT animation tools and games - as well as pedagogical framework specific to the transition phase from kindergarten to school.
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.