In pursuit of competitive advantage in an increasingly globalized and complex environment, organizations are turning to continuous improvement and digitalization to achieve operational excellence. Viewed through the lens of Dynamic Capabilities Theory, the similarities complementarities, and synergies of continuous improvement capability and data analytic capability are examined. Bridging the gap between theory and practice, continuous improvement routines and practices that can be harnessed to accelerate the implementation of data analytical capability are identified. These include Hoshin Kanri to link digitalization projects to organizational strategic, training to develop organizational knowledge of digitalization, problem solving teams to break knowledge silos, and the use of PDCA-type processes for adopting and monitoring the performance of digital technologies.
Introduction: The implementation of oncology care pathways that standardize organizational procedures has improved cancer care in recent years. However, the involvement of “authentic” patients and caregivers in quality improvement of these predetermined pathways is in its infancy, especially the scholarly reflection on this process. We, therefore, aim to explore the multidisciplinary challenges both in practice, when cancer patients, their caregivers, and a multidisciplinary team of professionals work together on quality improvement, as well as in our research team, in which a social scientist, health care professionals, health care researchers, and experience experts design a research project together. Methods and design: Experience-based co-design will be used to involve cancer patients and their caregivers in a qualitative research design. In-depth open discovery interviews with 12 colorectal cancer patients, 12 breast cancer patients, and seven patients with cancer-associated thrombosis and their caregivers, and focus group discussions with professionals from various disciplines will be conducted. During the subsequent prioritization events and various co-design quality improvement meetings, observational field notes will be made on the multidisciplinary challenges these participants face in the process of co-design, and evaluation interviews will be done afterwards. Similar data will be collected during the monthly meetings of our multidisciplinary research team. The data will be analyzed according to the constant comparative method. Discussion: This study may facilitate quality improvement programs in oncologic care pathways, by increasing our real-world knowledge about the challenges of involving “experience experts” together with a team of multidisciplinary professionals in the implementation process of quality improvement. Such co-creation might be challenging due to the traditional paternalistic relationship, actual disease-/treatment-related constraints, and a lack of shared language and culture between patients, caregivers, and professionals and between professionals from various disciplines. These challenges have to be met in order to establish equality, respect, team spirit, and eventual meaningful participation.
Purpose: To deal with an increasingly competitive environment, organizations are combining continuous improvement (CI) practices with digitalization to accrue their benefits on operational performance and achieve operational excellence. The purpose of this study was to identify the enablers and inhibitors of digitalization as part of CI projects. Design/methodology/approach: A mixed-methods sequential explanatory research design consisting of an online survey and semi-structured interviews was used to examine how digitalization technologies have been incorporated by organizations in their CI projects. Findings: Key enablers of digitalization were found to be leadership capabilities, strategic direction, stakeholder involvement, system compatibility, data quality and giving employees room to experiment. Knowledge of digitalization was found to affect all these enablers. Research limitations/implications: The empirical findings are based on a nonprobability sample of Dutch CI practitioners, limiting their generalizability. Practical implications: The empirical findings highlight the need for organizations to adopt a structured approach to implementing digitalization as part of their CI projects, starting by ensuring that the necessary knowledge and skills are either present or accessible to the organization. Originality/value: The empirical findings show that enablers of digitalization in the context of CI are strongly interlinked, and thus require a holistic approach.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Alcohol use disorder (AUD) is a major problem. In the USA alone there are 15 million people with an AUD and more than 950,000 Dutch people drink excessively. Worldwide, 3-8% of all deaths and 5% of all illnesses and injuries are attributable to AUD. Care faces challenges. For example, more than half of AUD patients relapse within a year of treatment. A solution for this is the use of Cue-Exposure-Therapy (CET). Clients are exposed to triggers through objects, people and environments that arouse craving. Virtual Reality (VRET) is used to experience these triggers in a realistic, safe, and personalized way. In this way, coping skills are trained to counteract alcohol cravings. The effectiveness of VRET has been (clinically) proven. However, the advent of AR technologies raises the question of exploring possibilities of Augmented-Reality-Exposure-Therapy (ARET). ARET enjoys the same benefits as VRET (such as a realistic safe experience). But because AR integrates virtual components into the real environment, with the body visible, it presumably evokes a different type of experience. This may increase the ecological validity of CET in treatment. In addition, ARET is cheaper to develop (fewer virtual elements) and clients/clinics have easier access to AR (via smartphone/tablet). In addition, new AR glasses are being developed, which solve disadvantages such as a smartphone screen that is too small. Despite the demand from practitioners, ARET has never been developed and researched around addiction. In this project, the first ARET prototype is developed around AUD in the treatment of alcohol addiction. The prototype is being developed based on Volumetric-Captured-Digital-Humans and made accessible for AR glasses, tablets and smartphones. The prototype will be based on RECOVRY, a VRET around AUD developed by the consortium. A prototype test among (ex)AUD clients will provide insight into needs and points for improvement from patient and care provider and into the effect of ARET compared to VRET.