A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators.
The project aim is to improve collusion resistance of real-world content delivery systems. The research will address the following topics: • Dynamic tracing. Improve the Laarhoven et al. dynamic tracing constructions [1,2] [A11,A19]. Modify the tally based decoder [A1,A3] to make use of dynamic side information. • Defense against multi-channel attacks. Colluders can easily spread the usage of their content access keys over multiple channels, thus making tracing more difficult. These attack scenarios have hardly been studied. Our aim is to reach the same level of understanding as in the single-channel case, i.e. to know the location of the saddlepoint and to derive good accusation scores. Preferably we want to tackle multi-channel dynamic tracing. • Watermarking layer. The watermarking layer (how to embed secret information into content) and the coding layer (what symbols to embed) are mostly treated independently. By using soft decoding techniques and exploiting the “nuts and bolts” of the embedding technique as an extra engineering degree of freedom, one should be able to improve collusion resistance. • Machine Learning. Finding a score function against unknown attacks is difficult. For non-binary decisions there exists no optimal procedure like Neyman-Pearson scoring. We want to investigate if machine learning can yield a reliable way to classify users as attacker or innocent. • Attacker cost/benefit analysis. For the various use cases (static versus dynamic, single-channel versus multi-channel) we will devise economic models and use these to determine the range of operational parameters where the attackers have a financial benefit. For the first three topics we have a fairly accurate idea how they can be achieved, based on work done in the CREST project, which was headed by the main applicant. Neural Networks (NNs) have enjoyed great success in recognizing patterns, particularly Convolutional NNs in image recognition. Recurrent NNs ("LSTM networks") are successfully applied in translation tasks. We plan to combine these two approaches, inspired by traditional score functions, to study whether they can lead to improved tracing. An often-overlooked reality is that large-scale piracy runs as a for-profit business. Thus countermeasures need not be perfect, as long as they increase the attack cost enough to make piracy unattractive. In the field of collusion resistance, this cost analysis has never been performed yet; even a simple model will be valuable to understand which countermeasures are effective.
Het stabiel operationeel houden van anaerobe vergisters van organische afvalstromen (bijvoorbeeld mest, voedselafval of zuiveringsslib) is een grote uitdaging. Veel vergisters draaien daardoor suboptimaal of staan zelfs helemaal stil, met economische schade voor de boer, leveranciers van biovergisters, als samenleving door minder omzetting van circulaire grondstoffen tot bijvoorbeeld vetzuren of methaan. Mechanistische modellen worden toegepast voor geautomatiseerde procesregeling, maar de onderliggende microbiële en fysisch chemische processen zijn dusdanig gecompliceerd dat de regeling weinig robuust is. Daarentegen kan kunstmatige intelligentie –en met name Artificial Neural Network (ANN)– systeemgedrag beschrijven zonder voorkennis van de in de bioreactor optredende mechanismen. ANN-modellen hebben met succes biogasproductie voorspeld en geoptimaliseerd met specifieke input- en outputparameters. Dit voorstel beoogt een Slimme Procesregeling voor Anaerobe VERgisters en geeft de aanzet tot een ANN-model dat in staat is om het vergistingsproces onder verschillende omstandigheden te voorspellen op basis van gegevens verkregen uit literatuuronderzoek en experimenten. Een vervolgproject kan dit uitbouwen naar een nauwkeuriger ANN-model dat een proactieve regelstrategie kan geven voor de vergisters in het werkveld van onder andere de projectpartners HoSt en Methaplanet. Vernieuwend is de kruisbestuiving tussen verwaarding van organische reststromen met kunstmatige intelligentie in een samenwerkingsverband tussen de Saxion-lectoraten Duurzame Energievoorziening, Ambient Intelligence, de UT-vakgroep Discrete Mathematics and Mathematical Programming, genoemde vergisterleveranciers en ToPerform. Dit moet leiden tot een betere benutting van organische reststromen door middel van vergisting. Het voorstel past daarom binnen het thema “Chemische processen en technologie”, van de GoChem-missie Duurzame Chemie. Beoogde projectresultaten zijn: 1. Een trainingsset van empirische data die procesparameters kan relateren aan procesfalen voor verschillende soorten organische reststromen; 2. Een opzet voor een ANN die met geleverde trainingsset de mogelijkheid voor een proactieve regelstrategie voor vergisters aantoont; 3. Een aanzet voor een vervolgproject om de ANN uit te werken tot een proactieve regelstrategie voor de mkb-partners in het werkveld.