Shared Vision Planning (SVP) is a collaborative approach to water (resource) management that combines three practices: (1) traditional water resources planning; (2) structured participation of stakeholders; (3) (collaborative) computer modeling and simulation. The authors argue that there are ample opportunities for learning and innovation in SVP when we look at it as a form of Policy Analysis (PA) in a multi-actor context. SVP faces three classic PA dilemmas: (1) the role of experts and scientific knowledge in policymaking; (2) The design and management of participatory and interactive planning processes; and (3) the (ab)use of computer models and simulations in (multi actor) policymaking. In dealing with these dilemmas, SVP can benefit from looking at the richness of PA methodology, such as for stakeholder analysis and process management. And it can innovate by incorporating some of the rapid developments now taking place in the field of (serious) gaming and simulation (S&G) for policy analysis. In return, the principles, methods, and case studies of SVP can significantly enhance how we perform PA for multi-actor water (resource) management.
This paper seeks to make a contribution to business model experimentation for sustainability by putting forward a relatively simple tool. This tool calculates the financial and sustainability impact based on the SDG’s of a newly proposed business model (BM). BM experimentation is described by Bocken et al. (2019) as an iterative-multi-actor experimentation process. At the final experimentation phases some form of sustainability measurement will be necessary in order to validate if the new proposed business model will be achieving the aims set in the project. Despite the plethora of tools, research indicates that tools that fit needs and expectations are scarce, lack the specific focus on sustainable BM innovation, or may be too complex and demanding in terms of time commitment (Bocken, Strupeit, Whalen, & Nußholz, 2019a). In this abstract we address this gap, or current inability of calculating the financial and sustainability effect of a proposed sustainable BM in an integrated, time effective manner. By offering a practical tool that allows for this calculation, we aim to answer the research question; “How can the expected financial and sustainability impact of BMs be forecasted within the framework of BM experimentation?
Conflict lies at the core of urban sustainability transitions and the indispensable structural changes that accompany them. In this chapter we examine the RESILIO project, a multi-actor collaboration in Amsterdam aiming to transition towards a 'climate proof' city through smart water retention systems on urban roofs. The focus is on the conflict that emerged during discussions about controlling the smart valves on the rooftops which are designed to prevent urban flooding. Using a discourse analytical framework, the study analyses participant interactions, conflicting positions, and discursive strategies employed by the partners involved in the initiative. Participants utilised several discursive strategies, including identity, stake, and accountability management, to manage their positions in the conflict and influence the discourse. The study highlights the challenges of addressing conflict that involves redefining accountability and responsibility between public and private actors in the collaborative setting of transition initiatives. By doing so the findings contribute to a deeper understanding of how conflict can shape learning processes and foster sustainable urban transitions.