Dit proefschrift heeft als onderwerp de toepassing van agenttechnologie in productie en productondersteuning. Onder een agent verstaan we in deze context een autonoom opererende software entiteit die gemaakt is om een zeker doel te realiseren en daartoe met de omgeving comuniceert en zelfstandig acties kan uitvoeren. In moderne productiesystemen streeft men ernaar om de tijd van ontwerp tot productie zo kort mogelijk te houden en de productie af te stemmen op de wensen van de individuele eindgebruiker. Vooral dit laatste streven past niet in het concept van massaproductie. Een methode moet gezocht worden om kleine hoeveelheden of zelfs unieke producten tegen een lage kostprijs te fabriceren. Om dit te verwezenlijken zijn voor dit onderzoek speciale goedkope productieplatforms ontwikkeld. Deze hercongureerbare productiemachines noemen we equiplets. Een verzameling van deze equiplets in een gridopstelling geplaatst en gekoppeld met een snelle netwerkverbinding is in staat om een aantal verschillende producten tegelijk te produceren. Dit noemen we exibele parallelle productie. Voor de softwareinfrastructuur is agenttechnologie toegepast. Twee typen agenten spelen hierin een hoofdrol. Een productagent is verantwoordelijk voor de totstandkoming van een enkel product. De productiemachines worden voorgesteld door zogenoemde equipletagenten. De productagent weet wat er moet gebeuren voor het maken van een product terwijl de equipletagent weet hoe een of meer productiestappen moeten worden uitgevoerd. Het hier voorgesteld concept verschilt in veel opzichten van standaard massaproductie. Elk product in wording volgt zijn eigen, mogelijk unieke pad langs de equiplets, de productie wordt per product gescheduled en niet per batch en er is geen sprake van een productielijn. Dit proefschrift stelt de softwarearchitectuur voor en beschrijft oplossingen voor de routeplanning waarbij het aantal wisselingen tussen equiplets geminimaliseerd is, een scheduling die gebaseerd is op schedulingschema's zoals toegepast in real-time operating systems en een op autonome voertuigen gebaseerd transportsysteem. Bij al deze oplossingen speelt de productagent een belangrijke rol. (uit de samenvatting van het proefschrift) SIKS Dissertation Series No. 2014-31 The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School for Information and Knowledge Systems.
Collaborative Mixed Reality Environments (CMREs) enable designing Performative Mixed Reality Experiences (PMREs) to engage participants’ physical bodies, mixed reality environments, and technologies utilized. However, the physical body is rarely purposefully incorporated throughout such design processes, leaving designers seated behind their desks, relying on their previous know-how and assumptions. In contrast, embodied design techniques from HCI and performing arts afford direct corporeal feedback to verify and adapt experiential aesthetics within the design process. This paper proposes a performative prototyping method, which combines bodystorming methods with Wizard of Oz techniques with a puppeteering approach, using inside-out somaesthetic- and outside-in dramaturgical perspectives. In addition, it suggests an interdisciplinary vocabulary to share and evaluate PMRE experiences during and after its design collaboration. This method is exemplified and investigated by comparing two case studies of PMRE design projects in higher-art education using the existing Social VR platform NEOS VR adapted as a CMRE.
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.