Author supplied, from ACM website: Architectural patterns are a helpful means for designing IT architectures, as they facilitate re-using proven knowledge (good practices) from previous exercises. Furthermore referencing a pattern in an architecture model helps improving the understandability of the model, as it directs to a comprehensive description of the pattern, but does not require to include the full description into the model. In this paper we describe how patterns can be woven into architecture models, focusing on deployment views of the IT infrastructure. Two different modeling approaches, Fundamental Modeling Concepts (FMC) and ArchiMate, are compared based on a real-world case concerning the infrastructure architecture of a large data center. This paper provides practical insights for IT architects from the industry by discussing the practical case and comparing both modeling approaches. Furthermore, it is supposed to intensify the exchange between industry experts and scientific researchers and it should motivate pursuing further research concerning patterns and IT infrastructure models.
LINK
This exploratory study investigates the rationale behind categorizing algorithmic controls, or algorithmic affordances, in the graphical user interfaces (GUIs) of recommender systems. Seven professionals from industry and academia took part in an open card sorting activity to analyze 45 cards with examples of algorithmic affordances in recommender systems’ GUIs. Their objective was to identify potential design patterns including features on which to base these patterns. Analyzing the group discussions revealed distinct thought processes and defining factors for design patterns that were shared by academic and industry partners. While the discussions were promising, they also demonstrated a varying degree of alignment between industry and academia when it came to labelling the identified categories. Since this workshop is part of the preparation for creating a design pattern library of algorithmic affordances, and since the library aims to be useful for both industry and research partners, further research into design patterns of algorithmic affordances, particularly in terms of labelling and description, is required in order to establish categories that resonate with all relevant parties
LINK
Prompt design can be understood similarly to query design, as a prompt aiming to understand cultural dimensions in visual research, forcing the AI to make sense of ambiguity as a way to understand its training dataset and biases ( Niederer, S. and Colombo, G., ‘Visual Methods for Digital Research’). It moves away from prompting engineering and efforts to make “code-like” prompts that suppress ambiguity and prevent the AI from bringing biases to the surface. Our idea is to keep the ambiguity present in the image descriptions like in natural language and let it flow through different stages (degrees) of the broken telephone dynamics. This way we have less control over the result or selection of the ideal result and more questions about the dynamics implicit in the biases present in the results obtained.Different from textual or mathematical results, in which prompt chains or asking the AI to explain how it got the result might be enough, images and visual methods assisted by AI demand new methods to deal with that. Exploring and developing a new approach for it is the main goal of this research project, particularly interested in possible biases and unexplored patterns in AI’s image affordances.How could we detect small biases in describing images and creating based on descriptions when it comes to AI? What exactly do the words written by AI when describing an image stand for? When detecting a ‘human’ or ‘science’, for example, what elements or archetypes are invisible between prompting, and the image created or described?Turning an AI’s image description into a new image could help us to have a glimpse behind the scenes. In the broken telephone game, small misperceptions between telling and hearing, coding and decoding, produce big divergences in the final result - and the cultural factors in between have been largely studied. To amplify and understand possible biases, we could check how this new image would be described by AI, starting a broken telephone cycle. This process could shed light not just into the gap between AI image description and its capacity to reconstruct images using this description as part of prompts, but also illuminate biases and patterns in AI image description and creation based on description.It is in line with previous projects on image clustering and image prompt analysis (see reference links), and questions such as identification of AI image biases, cross AI models analysis, reverse engineering through prompts, image clustering, and analysis of large datasets of images from online image and video-based platforms.The experiment becomes even more relevant in light of the results from recent studies (Shumailov et al., 2024) that show that AI models trained on AI generated data will eventually collapse.To frame this analysis, the proposal from Munn, Magee and Arora (2023) titled Unmaking AI Imagemaking introduces three methodological approaches for investigating AI image models: Unmaking the ecosystem, Unmaking the data and Unmaking the outputs.First, the idea of ecosystem was taken for these authors to describe socio-technical implications that surround the AI models: the place where they have been developed; the owners, partners, or supporters; and their interests, goals, and impositions. “Research has already identified how these image models internalize toxic stereotypes (Birnhane 2021) and reproduce forms of gendered and ethnic bias (Luccioni 2023), to name just two issues” (Munn et al., 2023, p. 2).There are also differences between the different models that currently dominate the market. Although Stable Diffusion seems to be the most open due to its origin, when working with images with this model, biases appear even more quickly than in other models. “In this framing, Stable Diffusion becomes an internet-based tool, which can be used and abused by “the people,” rather than a corporate product, where responsibility is clear, quality must be ensured, and toxicity must be mitigated” (Munn et al., 2023, p. 5).To unmaking the data, it is important to ask ourselves about the source and interests for the extraction of the data used. According to the description of their project “Creating an Ad Library Political Observatory”, “This project aims to explore diverse approaches to analyze and visualize the data from Meta’s ad library, which includes Instagram, Facebook, and other Meta products, using LLMs. The ultimate goal is to enhance the Ad Library Political Observatory, a tool we are developing to monitor Meta’s ad business.” That is to say, the images were taken from political advertising on the social network Facebook, as part of an observation process that seeks to make evident the investments in advertising around politics. These are prepared images in terms of what is seen in the background of the image, the position and posture of the characters, the visible objects. In general, we could say that we are dealing with staged images. This is important since the initial information that describes the AI is in itself a representation, a visual creation.
LINK
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar. Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden. Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.