Advanced technology is a primary solution for the shortage of care professionals and increasing demand for care, and thus acceptance of such technology is paramount. This study investigates factors that increase use of advanced technology during elderly care, focusing on current use of advanced technology, factors that influence its use, and care professionals’ experiences with the use. This study uses a mixed-method design. Logfiles were used (longitudinal design) to determine current use of advanced technology, questionnaires assessed which factors increase such use, and in-depth interviews were administered to retrieve care professionals’ experiences. Findings suggest that 73% of care professionals use advanced technology, such as camera monitoring, and consult clients’ records electronically. Six of nine hypotheses tested in this study were supported, with correlations strongest between performance expectancy and attitudes toward use, attitudes toward use and satisfaction, and effort expectancy and performance expectancy. Suggested improvements for advanced technology include expanding client information, adding report functionality, solving log-in problems, and increasing speed. Moreover, the quickest way to increase acceptance is by improving performance expectancy. Care professionals scored performance expectancy of advanced technology lowest, though it had the strongest effect on attitudes toward the technology.
Metaverse, a burgeoning technological trend that combines virtual and augmented reality, provides users with a fully digital environment where they can assume a virtual identity through a digital avatar and interact with others as they were in the real world. Its applications span diverse domains such as economy (with its entry into the cryptocurrency field), finance, social life, working environment, healthcare, real estate, and education. During the COVID-19 and post-COVID-19 era, universities have rapidly adopted e-learning technologies to provide students with online access to learning content and platforms, rendering previous considerations on integrating such technologies or preparing institutional infrastructures virtually obsolete. In light of this context, the present study proposes a framework for analyzing university students' acceptance and intention to use metaverse technologies in education, drawing upon the Technology Acceptance Model (TAM). The study aims to investigate the relationship between students' intention to use metaverse technologies in education, hereafter referred to as MetaEducation, and selected TAM constructs, including Attitude, Perceived Usefulness, Perceived Ease of Use, Self-efficacy of metaverse technologies in education, and Subjective Norm. Notably, Self-efficacy and Subjective Norm have a positive influence on Attitude and Perceived Usefulness, whereas Perceived Ease of Use does not exhibit a strong correlation with Attitude or Perceived Usefulness. The authors postulate that the weak associations between the study's constructs may be attributed to limited knowledge regarding MetaEducation and its potential benefits. Further investigation and analysis of the study's proposed model are warranted to comprehensively understand the complex dynamics involved in the acceptance and utilization of MetaEducation technologies in the realm of higher education
LINK
The effectiveness of smart home technology in home care situations depends on the acceptance and use of the technology by both users and end-users. In the Netherlands many projects have started to introduce smart home technology and telecare in the homes of elderly people, but only some have been successful. In this paper, features for success and failure in the deployment of new (ICT) technology in home care are used to revise the technology acceptance model (TAM) into a model that explains the use of smart home and telecare technology by older adults. In the revised model we make the variable 'usefulness' more specific, by describing the benefits of the technology that are expected to positively affect technology usage. Additionally, we state that several moderator variables - that are expected to influence this effect - should be added to the model in order to explain why people eventually do (not) use smart home technology, despite the benefits and the intention to use. We categorize these variables, that represent the problems found in previous studies, in 'accessibility', 'facilitating conditions' and 'personal variables'.