A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what extent does these individual problem solving activities really contribute to their mathematical problem solving ability? Developing mathematical problem solving ability requires reflective mathematical behaviour. Student teachers need to mathematize and generalize problems and problem approaches, and evaluate heuristics and problem solving processes. This demands self-confidence, motivation, cognition and metacognition. To what extent do student teachers show reflective behaviour during mathematical self-study and how can we explain their study behaviour? In this study 97 student teachers from seven different teacher education institutes worked on ten non-routine problems. They were motivated because the test-like problems gave them an impression of the test and enabled them to investigate whether they were already prepared well enough. This study also shows that student teachers preparing for the test were not focused on developing their mathematical problem solving ability. They did not know that this was the goal to strive for and how to aim for it. They lacked self-confidence and knowledge to mathematize problems and problem approaches, and to evaluate the problem solving process. These results indicate that student teachers do hardly develop their mathematical problem solving ability in self-study situations. This leaves a question for future research: What do student teachers need to improve their mathematical self-study behaviour? EAPRIL Proceedings, November 29 – December 1, 2017, Hämeenlinna, Finland
Background: With the increased attention on implementing inquiry activities in primary science classrooms, a growing interest has emerged in assessing students’ science skills. Research has been concerned with the limitations and advantages of different test formats to assess students’ science skills. Purpose: This study explores the construction of different instruments for measuring science skills by categorizing items systematically on three subskill levels (science-specific, thinking, metacognition,) and different activities of the empirical cycle.Sample: The study included 128 5th and 6th grade students from seven primary schools in the Netherlands.Design and method: Seven measures were used: a paper-and-pencil test, three performance assessments, two metacognitive self-report tests and a test used as an indication of general cognitive ability.Results: Reliabilities of all tests indicate sufficient internal consistency. Positive correlations between the paper-and-pencil test and performance assessments reinforce that the different tests measure a common core of similar skills thus providing evidence for convergent validity. Results also show that students’ ability in performing scientific inquiry is significantly related to general cognitive ability. No relations are found between the measure of general metacognitive ability and the paper-and-pencil test or the three performance assessments. By contrast the metacognitive self-report test constructed to obtain information about application of metacognitive abilities in performing scientific inquiry, shows significant - although small - correlations with two performance assessments. Further explorations reveal sufficient scale reliabilities on subskill and empirical step level.Conclusions: The present study shows that science skills can be measured reliably by categorizing items on subskill and step level. Additional diagnostic information can be obtained by examining mean scores on both subskill and step level. Such measures are not only suitable for assessing students’ mastery of science skills but can also provide teachers diagnostic information to adapt their instructions and foster the learning process of their students.
Presentation on Etmaal 2020 about patient practitioner interaction in health communication. "Etmaal van de Communicatiewetenschap" is the annual conference for all communciation science scolars in the Netherlands, Flanders, and beyond. On the 6th and 7th of February 2020 it was hosted by the Amsterdam School of Communication Research (ASCoR) at the University of Amsterdam.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The focus of this project is on improving the resilience of hospitality Small and Medium Enterprises (SMEs) by enabling them to take advantage of digitalization tools and data analytics in particular. Hospitality SMEs play an important role in their local community but are vulnerable to shifts in demand. Due to a lack of resources (time, finance, and sometimes knowledge), they do not have sufficient access to data analytics tools that are typically available to larger organizations. The purpose of this project is therefore to develop a prototype infrastructure or ecosystem showcasing how Dutch hospitality SMEs can develop their data analytic capability in such a way that they increase their resilience to shifts in demand. The one year exploration period will be used to assess the feasibility of such an infrastructure and will address technological aspects (e.g. kind of technological platform), process aspects (e.g. prerequisites for collaboration such as confidentiality and safety of data), knowledge aspects (e.g. what knowledge of data analytics do SMEs need and through what medium), and organizational aspects (what kind of cooperation form is necessary and how should it be financed).