IntroductionThe Netherlands is changing from a welfare to a participation society in which citizens themselves are responsible for their health. However, this is not accessible to every citizen, resulting in an increase in marginalized vulnerable groups, often with a migrant background with problems in health, debt, addiction and poor housing. Within the Health Faculty, there is a lack of training students to become interprofessional professionals in community-based health promotion in the urban diverse environment.ObjectivesAn educational innovation has been started, based on the theory of positive health and social determinants of health, using design thinking as methodology. This educational innovation enriches interprofessional collaboration and intercultural communication competences of students and prepares students for their future role as health professionals in urban settings.ApproachDeveloping community-based education as a continuous learning line in the curricula of all bachelor courses (Occupational Therapy, Physiotherapy and Nursing) based on a sustainable assignment portfolio of citizen challenges in the urban environment.Result/Practice implicationsA total of 84 students participated in interprofessional education teams. They learned to use each other's expertise to devise 'citizen-oriented' solutions for health promotion. Until now, the students have focused on complex challenges such as loneliness, liveability in and around high-rise flats, fall prevention for elderly and the promotion of a healthy lifestyle. ConclusionStudents carry out assignments and internships in the community for citizens with complex needs. The teaching staff supervises students in the community and local professionals and citizens enrich education focused on diversity and interprofessional health promotion.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy