Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
Positive Energy Districts (PEDs) have the potential of accelerating the decarbonization of urban areas and promoting scalability between cities. The development and real-world implementation of such innovative concepts can be enhanced through urban energy modelling. However, assessing PEDs can be challenging, and information on this topic is scarce and fragmented. The main contribution of this paper is collecting and analyzing challenges and limitations of energy modelling software for assessing PEDs through five case studies in Italy, Spain, The Netherlands, Denmark and Canada. Case studies are assessed first from a modelling approach, then the main identified challenges and limitations of modelling tools for PEDs are discussed, and finally, various ongoing trends and research needs in this field are suggested.