Introduction: Peripheral intravenous cannulation is the preferred method to obtain vascular access, but not always successful on the first attempt. Evidence on the impact of the intravenous catheter itself on the success rate is lacking. Faster visualization of blood flashback into the catheter, as a result of a notched needle, is thought to increase first attempt success rate. The current study aimed to assess if inserting a notched peripheral intravenous catheter will increase first attempt cannulation success up to 90%, when compared to inserting a catheter without a notched needle. Design: In this block-randomized trial, adult patients in the intervention group got a notched peripheral intravenous catheter inserted, patients in the control group received a traditional non-notched catheter. The primary objective was the first attempt success rate of peripheral intravenous cannulation. Intravenous cannulation was performed according to practice guidelines and hospital policy. Results: About 328 patients were included in the intervention group and 330 patients in the control group. First attempt success was 85% and 79% for the intervention and control group respectively. First attempt success was remarkably higher in the intervention group regarding patients with a high risk for failed cannulation (29%), when compared to the control group (10%). Conclusion: This study was unable to reach a first attempt success of 90%, although first attempt cannulation success was higher in patients who got a notched needle inserted when compared to those who got a non-notched needle inserted, unless a patients individual risk profile for a difficult intravenous access.
MULTIFILE
28-02-2022Study objective: The three-dimensional shape of the ultrasound beam produces a thicker scan plane than most users assume. Viewed longitudinally, a needle placed lateral to a vessel just outside the central scanning plane can be displayed incorrectly in the ultrasound image as if placed intravascularly. This phenomenon is called the beam width artefact, also known as the elevation or slice thickness artefact. The goal of this study was to demonstrate the potential negative effect of the beam width artefact on the performance of in-plane ultrasound- guided vascular access procedures, and to provide a solution. Design: Randomized, double-blinded study Setting: Department of anaesthesiology and intensive care of a teaching hospital Participants: 31 experienced (anesthesiologists and intensivists) and 36 inexperienced (anesthetic nurses) ultrasound users Interventions: We developed an acoustic lens that narrows the scan plane to reduce the beam width artefact. The lens was tested in a simulated vascular access study. Measurements: The primary endpoint was first pass success. Secondary endpoints were the number of punctures and needle withdrawals, procedure time, needle visibility and operator satisfaction. Main results: First pass success was highly enhanced using the acoustic lens, with a success rate of 92.5% versus 68.7% without the lens (difference 23.8, 95% confidence interval 11.0–35.3, p <0.001). The total number of punctures needed to obtain intravenous access was also reduced using the lens (1.10 versus 1.38, difference 0.27, 95% CI 0.11–0.43, p =0.002). Procedure time, needle withdrawals, needle visibility and satisfaction were similar. Both inexperienced and experienced users benefited from the acoustic lens. Conclusions: The beam width artefact has a significant effect on the performance of ultrasound-guided needle- based procedures. The efficacy of in-plane superficial vascular access procedures can be enhanced by narrowing the imaging plane using an acoustic lens.
MULTIFILE
02-02-2022Abstract Aims: To lower the threshold for applying ultrasound (US) guidance during peripheral intravenous cannulation, nurses need to be trained and gain experience in using this technique. The primary outcome was to quantify the number of procedures novices require to perform before competency in US-guided peripheral intravenous cannulation was achieved. Materials and methods: A multicenter prospective observational study, divided into two phases after a theoretical training session: a handson training session and a supervised life-case training session. The number of US-guided peripheral intravenous cannulations a participant needed to perform in the life-case setting to become competent was the outcome of interest. Cusum analysis was used to determine the learning curve of each individual participant. Results: Forty-nine practitioners participated and performed 1855 procedures. First attempt cannulation success was 73% during the first procedure, but increased to 98% on the fortieth attempt (p<0.001). The overall first attempt success rate during this study was 93%. The cusum learning curve for each practitioner showed that a mean number of 34 procedures was required to achieve competency. Time needed to perform a procedure successfully decreased when more experience was achieved by the practitioner, from 14±3 minutes on first procedure to 3±1 minutes during the fortieth procedure (p<0.001). Conclusions: Competency in US-guided peripheral intravenous cannulation can be gained after following a fixed educational curriculum, resulting in an increased first attempt cannulation success as the number of performed procedures increased.
MULTIFILE
10-11-2021Niet bekend