product

Towards trustworthy data-driven gas turbine prognostics


Description

Trustworthy data-driven prognostics in gas turbine engines are crucial for safety, cost-efficiency, and sustainability. Accurate predictions depend on data quality, model accuracy, uncertainty estimation, and practical implementation. This work discusses data quality attributes to build trust using anonymized real-world engine data, focusing on traceability, completeness, and representativeness. A significant challenge is handling missing data, which introduces bias and affects training and predictions. The study compares the accuracy of predictions using Exhaust Gas Temperature (EGT) margin, a key health indicator, by keeping missing values, using KNN-imputation, and employing a Generalized Additive Model (GAM). Preliminary results indicate that while KNN-imputation can be useful for identifying general trends, it may not be as effective for specific predictions compared to GAM, which considers the context of missing data. The choice of method depends on the study’s objective: broad trend forecasting or specific event prediction, each requiring different approaches to manage missing data.



Publication date

Type

Document (PDF)

Right Of Use
Unknown
Access Rights

Not known

DOI

Not known