The World Health Organization has pinpointed antimicrobial resistance (AMR) of increasing global concern, causing increased healthcare costs and threatening human health. Although AMR is a naturally occurring process, it is accelerated by misuse/overuse of antibiotics. Additionally, the development and production of antibiotics is becoming increasingly challenging and costly. These challenges underline the high demand for alternative microbial inhibitors (e.g. antibiotics) and their development.
The chemical compound Allicin has been studied for its potential health benefits, including antimicrobial properties[1,2] and potential cardiovascular benefits[3]. It has been suggested that the antimicrobial effect of Allicin could be achieved indirectly by the imprint it leaves in surrounding water molecules, i.e. its hydration shell. Such imprints are known as time-crystals and possess unique properties. Since often biochemical reactions occur via water molecules and their hydrogen bonds, it is possible that a time-crystal imprint of a substance in water might have a similar effect as the substance itself, e.g. antimicrobial inhibition.
A consortium of universities, knowledge institutes and companies was formed to test this hypothesis based on the antibacterial properties of Allicin, resulting in the project HyTimeCIA. The experiments involve attaching allicin onto a polymer surface (i.e. hybridization), thereby providing antibacterial properties. This surface is then exposed to bacteria to test the antimicrobial properties of the allicin/polymer surface. If proven feasible, HyTimeCIA could provide a novel alternative microbial inhibitor fixated to a surface, allowing for localized application of antibacterial effects and potentially reducing the requirement of antibiotics. This not only mitigates AMR, but also facilitates production of microbial inhibitors that are particularly difficult or expensive. From the partners perspective, HyTimeCIA provides opportunities for chemical-free alternative antimicrobial (water)treatment technology and gained knowledge on alternative microbial inhibitors, both aspects which are highly in demand due to AMR and antibiotic production challenges.
This project has no products
To be started
Not known
GOCH.KIEM.05.022