BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.
Albeit the widespread application of recommender systems (RecSys) in our daily lives, rather limited research has been done on quantifying unfairness and biases present in such systems. Prior work largely focuses on determining whether a RecSys is discriminating or not but does not compute the amount of bias present in these systems. Biased recommendations may lead to decisions that can potentially have adverse effects on individuals, sensitive user groups, and society. Hence, it is important to quantify these biases for fair and safe commercial applications of these systems. This paper focuses on quantifying popularity bias that stems directly from the output of RecSys models, leading to over recommendation of popular items that are likely to be misaligned with user preferences. Four metrics to quantify popularity bias in RescSys over time in dynamic setting across different sensitive user groups have been proposed. These metrics have been demonstrated for four collaborative filteri ng based RecSys algorithms trained on two commonly used benchmark datasets in the literature. Results obtained show that the metrics proposed provide a comprehensive understanding of growing disparities in treatment between sensitive groups over time when used conjointly.
Efficiency of city logistics activities suffers due to conflicting personal preferences and distributed decision making by multiple city logistics stakeholders. This is exacerbated by interdependency of city logistics activities, decision making with limited information and stakeholders’ preference for personal objectives over system efficiency. Accordingly, the key to understanding the causes of inefficiency in the city logistics domain is understanding the interaction between heterogeneous stakeholders of the system. With the capabilities of representing a system in a natural and flexible way, agent based modelling (ABM) is a promising alternative for the city logistics domain. This research focuses on developing a framework for the successful implementation of the ABM approach for the city logistics domain. The framework includes various elements – a multi-perspective semantic data model (i.e. ontology) and its validation, the development of an agent base model using this ontology, and a validation approach for the agent-based model. Conclusively, the framework shows that a rigorous course can be taken to successfully implement agent based modelling approach for the city logistics domain.