Dynamic stall phenomena bring risk for negative damping and instability in wind turbine blades. It is crucial to model these phenomena accurately to reduce inaccuracies in predicting design driving (fatigue) loads. Inaccuracies in currentdynamic stall models may be due to the facts that they are not properly designed for high angles of attack, and that they do not 10 specifically describe vortex shedding behaviour. The Snel second order dynamic stall model attempts to explicitly model unsteady vortex shedding. This model could therefore be a valuable addition to DNV GL’s turbine design software Bladed. In this thesis the model has been validated with oscillating airfoil experiments and improvements have been proposed for reducing inaccuracies. The proposed changes led to an overall reduction in error between the model and experimental data. Furthermore the vibration frequency prediction improved significantly. The improved model has been implemented in Bladed and tested 15 against small scale turbine experiments at parked conditions. At high angles of attack the model looks promising for reducing mismatches between predicated and measured (fatigue) loading. Leading to possible lower safety factors for design and more cost efficient designs for future wind turbines.
DOCUMENT
In this paper, we focus on how the qualitative vocabulary of Dynalearn, which is used for describing dynamic systems, corresponds to the mathematical equations used in quantitative modeling. Then, we demonstrate the translation of a qualitative model into a quantitative model, using the example of an object falling with air resistance.
DOCUMENT
An important issue in the field of motion control of wheeled mobile robots is that the design of most controllers is based only on the robot’s kinematics. However, when high-speed movements and/or heavy load transportation are required, it becomes essential to consider the robot dynamics as well. The control signals generated by most dynamic controllers reported in the literature are torques or voltages for the robot motors, while commercial robots usually accept velocity commands. In this context, we present a velocity-based dynamic model for differential drive mobile robots that also includes the dynamics of the robot actuators. Such model has linear and angular velocities as inputs and has been included in Peter Corke’s Robotics Toolbox for MATLAB, therefore it can be easily integrated into simulation systems that have been built for the unicycle kinematics. We demonstrate that the proposed dynamic model has useful mathematical properties. We also present an application of such model on the design of an adaptive dynamic controller and the stability analysis of the complete system, while applying the proposed model properties. Finally, we show some simulation and experimental results and discuss the advantages and limitations of the proposed model.
DOCUMENT
Background: Most studies on older adults' vitality focus on linear connections between determinants and outcomes. To design more comprehensive and impactful approaches to support the vitality of older adults, a better understanding of the interplay among elements that shape their vitality is necessary. Objective: To uncover the underlying dynamic system that drives vitality in older adults, drawing directly from older adults' perspectives. Methods: During three group model-building sessions with 10–12 older adults (≥ 55 years old), a causal loop diagram with relevant feedback loops was developed through co-creation with older adults. The construction and analysis of the causal loop diagram were facilitated using the online modelling tools Vensim and Kumu. The group model-building sessions were guided by Scriptapedia, an online guide to conducting group model-building practices. Results: The final CLD consisted of 15 elements contributing to older adults' vitality, organised into three themes: ‘Psychological and emotional elements’, ‘Social connections and support’ and ‘Lifestyle and habits’. A total of 41 reinforcing feedback loops were identified, with 21 involving all three themes, 15 connecting two themes and 5 within a single theme. Conclusions: This study displays the complex interplay of elements influencing older adults' vitality, highlighting the critical roles of psychological, social and lifestyle-related elements. The participatory-led approach yielded co-produced insights that inform public health strategies, underscoring the need for comprehensive, multidisciplinary approaches to promote older adults' vitality. Such approaches must offer social opportunities and foster individuals' capacity and motivation to engage in meaningful social relationships. Patient or Public Contribution: The study was conducted in collaboration with a municipal policymaker and a coordinator of local community centres, who provided input on participant recruitment, materials, data interpretation, ethical considerations and result dissemination. During data collection, twelve older adults participated in three group model-building sessions, collaboratively developing a causal loop diagram to explore elements of vitality and their interconnections. Ongoing member checking with participants throughout the process ensured the analysis was refined and the researchers' interpretations were validated.
DOCUMENT
The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.
LINK
Crime script analysis as a methodology to analyse criminal processes is underdeveloped. This is apparent from the various approaches in which scholars apply crime scripting and present their cybercrime scripts. The plethora of scripting methods raise significant concerns about the reliability and validity of these scripting studies. In this methodological paper, we demonstrate how object-oriented modelling (OOM) could address some of the currently identified methodological issues, thereby refining crime script analysis. More specifically, we suggest to visualise crime scripts using static and dynamic modelling with the Unified Modelling Language (UML) to harmonise cybercrime scripts without compromising their depth. Static models visualise objects in a system or process, their attributes and their relationships. Dynamic models visualise actions and interactions during a process. Creating these models in addition to the typical textual narrative could aid analysts to more systematically consider, organise and relate key aspects of crime scripts. In turn, this approach might, amongst others, facilitate alternative ways of identifying intervention measures, theorising about offender decision-making, and an improved shared understanding of the crime phenomenon analysed. We illustrate the application of these models with a phishing script.
MULTIFILE
Business process modeling and system dynamics are different approaches that are used in the design and management of organizations. Both approaches are concerned with the processes in, and around, organizations with the aim to identify, design and understand their behavior as well as potential improvements. At the same time, these approaches differ considerably in their methodological focus. While business process modeling specifically takes the (control flow of) business processes as its primary focus, system dynamics takes the analysis of complex and multi-faceted systems as its core focus. More explicitly combining both approaches has the potential to better model and analyze (by way of simulation) complex business processes, while specifically also including more relevant facets from the environment of these business processes. Furthermore, the inherent ability for simulation of system dynamics models, can be used to simulate the behavior of processes over time, while also putting business processes in a broader multi-faceted context. In this paper, we report on initial results on making such a more explicit combination of business process modeling and system dynamics. In doing so, we also provide a step-by-step guide on how to use BPMN based models and system dynamics models together to model and analyze complex business processes, while illustrating this in terms of a case study on the maintenance of building facades.
LINK
Business process modeling and system dynamics are different approaches that are used in the design and management of organizations. Both approaches are concerned with the processes in, and around, organizations with the aim to identify, design and understand their behavior as well as potential improvements. At the same time, these approaches differ considerably in their methodological focus. While business process modeling specifically takes the (control flow of) business processes as its primary focus, system dynamics takes the analysis of complex and multi-faceted systems as its core focus. More explicitly combining both approaches has the potential to better model and analyze (by way of simulation) complex business processes, while specifically also including more relevant facets from the environment of these business processes. Furthermore, the inherent ability for simulation of system dynamics models, can be used to simulate the behavior of processes over time, while also putting business processes in a broader multi-faceted context. In this paper, we report on initial results on making such a more explicit combination of business process modeling and system dynamics. In doing so, we also provide a step-by-step guide on how to use BPMN based models and system dynamics models together to model and analyze complex business processes, while illustrating this in terms of a case study on the maintenance of building facades.
LINK
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE