Increasingly, Design Thinking's influence reaches beyond the confines of traditional design disciplines and expands its role in connecting domains and integrating resources. This study focused on the changing role of design researchers involved in interdisciplinary research projects, following a Research-through-Design (RtD) approach. The research setting for this study was a project on the design and evaluation of digital solutions in the context of dementia. This study applied process research methods to provide a holistic view of the dynamics between actors from different domains as well as an understanding of the role of design researchers within the complexity of the larger system of an interdisciplinary RtD collaboration. Findings at the organizational, process, and product levels emphasized the following three changing roles for design researchers in interdisciplinary RtD: (1) a mediator role, (2) a sensemaking role, and (3) a role in improving processes by applying research artefacts.
Objective: Systematic review to identify predictors for dropout during interdisciplinary pain management programmes. Data sources: PubMed, PsycINFO, CINAHL, Embase, and SPORTDiscus were searched from inception to 22 June 2017. Study selection: Screening, data-extraction and quality assessment was carried out independently by 2 researchers. Data synthesis: Eight studies with low methodological quality were included in this review. Out of 63 potential predictors identified in univariate analyses, significant results were found for 18 predictors of dropout in multiple logistic regression analyses in 4 domains, as described by Meichenbaum & Turk: (i) sociodemographic domain (2); (ii) patient domain (8); (iii) disease domain (6); and (iv) treatment domain (2). Conclusion: This systematic review presents an overview of predictors of dropout. The literature with regard to the prediction of dropout has focused mainly on patient characteristics and is still in the stage of model development. Future research should focus on therapist/therapy-related predictors and the interaction between these predictors. This review suggests future research on this topic, in order to generate better outcomes in interdisciplinary pain management programmes.
Making design work in the field of dementia requires interdisciplinary research. However, obstacles are likely to occur when healthcare and creative researchers work together. Analyzing the startup phase of ten interdisciplinary projects in the field of dementia, overweight and loneliness we found seven strategies to overcome these barriers: use boundary brokers, combine theory, combine research approaches, organize for collaboration, joint activities, separate activities, and use artefacts. As many dementia research projects involve exploring new products and technologies, particularly the use of artefacts might be an interesting strategy to foster the collaboration of healthcare and creative research disciplines.
Energy transition is key to achieving a sustainable future. In this transition, an often neglected pillar is raising awareness and educating youth on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. The Master Energy for Society, and particularly the course “Society in Transition”, aims at providing a first overview on the urgency and complexities of the energy transition. However, educating on the energy transition brings challenges: it is a complex topic to understand for students, especially when they have diverse backgrounds. In the last years we have seen a growing interest in the use of gamification approaches in higher institutions. While most practices have been related to digital gaming approaches, there is a new trend: escape rooms. The intended output and proposed innovation is therefore the development and application of an escape room on energy transition to increase knowledge and raise motivation among our students by addressing both hard and soft skills in an innovative and original way. This project is interdisciplinary, multi-disciplinary and transdisciplinary due to the complexity of the topic; it consists of three different stages, including evaluation, and requires the involvement of students and colleagues from the master program. We are confident that this proposed innovation can lead to an improvement, based on relevant literature and previous experiences in other institutions, and has the potential to be successfully implemented in other higher education institutions in The Netherlands.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.