The transition towards electric mobility is expected to take off the coming years, as more EV car models access the market and charging infrastructure is being expanded. The expansion of charging infrastructure will have to accelerate to keep pace with the fast-growing need for charging. The coming years will be marked by uncertainty regarding technological developments (batteries, range), charging technologies (e.g. fast charging, inductive), growth of car sharing and autonomous driving and impact on user preferences and charging behaviour Data management is key to the EV market and public parties involved: to be able to adapt quickly to changes and to reduce risks and costs. This paper describes the five most important preconditions for effective data management that allows stakeholders to monitor the performance of their charging infrastructure and to take informed decisions on rollout strategies based on data science research results.
MULTIFILE
As society has to adapt to changing energy sources and consumption, it is driving away from fossil energy. One particular area of interest is electrical driving and the increasing demand for (public) charging facilities. For municipalities, it is essential to adapt to this changing demand and provide more public charging facilities.In order to accommodate on roll-out strategies in metropolitan areas a data driven simulation model, SEVA1, has been developed The SEVA base model used in this paper is an Agent-Based model that incorporate past sessions to predict future charging behaviour. Most EV users are habitual users and tend to use a small subset of the available charge facilities, by that obtaining a pattern is within the range possibilities. Yet, for non-habitual users, for example, car sharing users, obtaining a pattern is much harder as the cars use a significantly higher amount of charge points.The focus of this research is to explore different model implementations to assess the potential of predicting free-floating cars from the non-habitual user population. Most important result is that we now can simulate effects of deployement of car sharing users in the system, and with that the effect on convenience for habitual users. Results show that the interaction between habitual and non habitual EV users affect the unsuccessful connection attempts based increased based on the size of the car-sharing fleet up to approximately 10 percent. From these results implications for policy makers could be drawn.
MULTIFILE
The increased adoption of electric vehicles worldwide is largely caused by the uptake of private electric cars. In parallel other segments such as busses, city logistics and taxis, are increasingly becoming electrified. Amsterdam is an interesting case, as the municipality and the taxi sector have signed a voluntary agreement to realise a full electric taxi fleet by 2025. This paper investigates the results of a survey that was distributed amongst 3000 taxi drivers to examine perceptions and attitudes on the municipal charging incentives as well as taxi ride characteristics.
MULTIFILE