BACKGROUND:The number of workers who have previously undergone a cancer treatment is increasing, and possible late treatment effects (fatigue, physical and cognitive complaints) may affect work ability.OBJECTIVE:The aim of the study was to investigate the impact of late treatment effects and of job resources (autonomy, supportive leadership style, and colleagues’ social support) on the future work ability of employees living 2–10 years beyond a breast cancer diagnosis.METHODS:Data at T1 (baseline questionnaire) and at T2 (9 months later) were collected in 2018 and 2019 (N = 287) among Dutch-speaking workers with a breast cancer diagnosis 2–10 years ago. Longitudinal regression analyses, controlling for years since diagnosis, living with cancer (recurrence or metastasis), other chronic or severe diseases, and work ability at baseline were executed.RESULTS:Higher levels of fatigue and cognitive complaints at baseline predicted lower future work ability. The three job resources did not predict higher future work ability, but did relate cross-sectionally with higher work ability at baseline. Autonomy negatively moderated the association between physical complaints and future work ability.CONCLUSIONS:Fatigue and cognitive complaints among employees 2–10 years past breast cancer diagnosis need awareness and interventions to prevent lower future work ability. Among participants with average or high levels of physical complaints, there was no difference in future work ability between medium and high autonomy. However, future work ability was remarkably lower when autonomy was low.
Abstract: Technological innovation in the healthcare sector is increasing, but integration of information technology (IT) in the care process is difficult. Healthcare workers are important agents in this IT integration. The purpose of this study is to explore factors that feed motivation to use IT. Self-determination theory (SDT) is applied to study how motivational factors impact effective IT use among frontline caregivers in residential care settings. As the team is very important to these caregivers, the team is our unit of analysis. In an embedded single case study design, interviews were conducted with all nine members of a team effectively using IT. All three basic psychological needs from SDT - autonomy, competence and relatedness - were found to have impact on effective IT use, though autonomy was primarily experienced at team level. Conversely, the effective use of an IT collaboration tool influences relatedness.
MULTIFILE
Robots are increasingly used in a variety of work environments, but surprisingly little attention has been paid to how robots change work. In this comparative case study, we explore how robotization changed the work design of order pickers and order packers in eight logistic warehouses. We found that all warehouses robotized tasks based on technological functionality to increase efficiency, which sometimes created jobs consisting of ‘left-over tasks’. Only two warehouses used a bottom-up approach, where employees were involved in the implementation and quality of work was considered important. Although the other warehouses did not, sometimes their work design still benefitted from robotization. The positive effects we identified are reduced physical and cognitive demands and opportunities for upskilling. Warehouses that lack attention to the quality of work may risk ending up with the negative effects for employees, such as simplification and intensification of work, and reduced autonomy. We propose that understanding the consequences of robots on work design supports HR professionals to help managing this transition by both giving relevant input on a strategic level about the importance of work design and advocating for employees and their involvement.
De Nederlandse agrosector heeft te maken met sterke schaalvergroting, klimaatverandering, achteruitgang van bouwland door bodemverdichting van zware machines, teruglopende beschikbaarheid van arbeid en een strengere milieuwetgeving. Oplossingen worden gezocht in het gebruik van kleine, autonome machines (agrobots) die specifieke taken van boeren kunnen overnemen. Nederlandse machinebouwers als Lely spelen hierop in met melk-, voer- en mestruimrobots. De agrarische sector wil steeds efficiënter werken, haar productiviteit verbeteren en vraagt zodoende voortdurend om slimmere applicaties. Een toekomstbeeld waarbij samenwerkende agrobots situaties kunnen beoordelen en gezamenlijk complexe taken kunnen uitvoeren wordt gezien als ‘The next step’ en onvermijdelijk, maar tevens als ingewikkeld, risicovol en voorlopig onrealiseerbaar. Machinebouwers hechten grote waarde aan betrouwbaarheid en missen de technologie om onderlinge coöperativiteit tussen machines met de nodige robuustheid te kunnen ontwikkelen en te integreren in hun product. De HAN heeft inmiddels veel ervaring opgebouwd op het gebied van programmeertools voor robotica en wil samen met kennisinstellingen als WUR, TUDelft en UT, machinebouwers als Lely en MultiToolTrac en eindgebruikers uit de agrarische sector, kennis en ervaring ontwikkelen op het gebied van het programmeren van robuuste, coöperatieve systemen. Het consortium wil dit doen met behulp van een modelgebaseerde workflow op basis van een integrale, open source toolchain waarin bestaande tools c.q. ecosystemen zijn geïntegreerd. Dit moet uiteindelijk resulteren in een praktijkdemonstratie – op de Floriade 2022 - van de technologie middels twee prototypes: mestrobots in de veehouderij en oogstafvoersystemen in de akkerbouw. Ten behoeve van een goede projectfocus beschouwt DurableCASE autonomie als reeds bestaand en voegt hier coöperativiteit aan toe. Concreet levert DurableCASE het volgende op: - gedemonstreerde en gepubliceerde, toepasbare kennis over robuuste coöperativiteit in agrobotica, gebaseerd op multi-agent technologie; - een open toolchain die efficiënte, modelgebaseerde ontwikkeling van robuuste coöperativiteit mogelijk maakt; - inzicht in de business case; - lesmateriaal op basis van bovengenoemde kennis en toolchain.
The increase in the number and complexity of crime activities in our nation together with shortage in human resources in the safety and security domain is putting extra pressure on emergency responders. The emergency responders are constantly confronted with sophisticated situations that urgently require professional, safe, and rapid handling to contain and conclude the situation to minimize the danger to public and the emergency responders. Recently, Dutch emergency responders have started to experiment with various types of robots to improve the responsiveness and the effectiveness of their responses. One of these robots is the Boston Dynamic’s Spot Robot Dog, which is primarily appealing for its ability to move in difficult terrains. The deployment of the robot in real emergencies is at its infancy. The main challenge that the robot dog operators are facing is the high workload. It requires the full attention to operate the robot itself. As such, the professional acts entirely as a robot operator rather than a domain expert that critically examines and addresses the main safety problems at hand. Therefore, there is an urgent request from these emergency response professionals to develop and integrate key technologies that enable the robot dog to operate more autonomously. In this project, we explore on how to increase the autonomy level of the robot dog in order to reduce the workload of the operator, and eventually help the operator remain domain expert. Therefore, we will explore the ability of the robot to autonomously 3D-map unknown confined areas. The results of this project will lead to new practical knowledge and a follow-up project that will focus on further developing the technologies that increase the autonomy of the robot for eventual deployment in operational environments. This project will also have direct contribution to education through involvement of students and lecturers.
The increasing concentration of people in urban environments in an era of globalisation means that social, economic, and environmental resources for living and working are under pressure. Urban communities experience increased stress levels due to inadequate and overburdened infrastructure and services, challenges due to ethnic and cultural diversity, socio-economic inequalities as well as the impact of environmental degradation. For these communities to build resilience under these circumstances therefore requires a multipronged approach. The underlying question this project will answer is: “What are the key characteristics of experiencescapes that contribute to resilience-building in communities?” The project will dive into the identification of building blocks of experiencescapes and roles of relevant actors that can support communities in building resilience. Within the context of a multidisciplinary approach, this project applies a range of qualitative research methods, such as in-depth interviews, focus groups, participant observation, storytelling techniques, life stories, as well as various biometric quantitative methods, available through the experience lab of BUas. The outcome of the project will enable practitioners and researchers alike in various sectors to understand what and how they can contribute to creating an environment in which people can meaningfully interact in a way that builds resilience in communities. This outcome is communicated not only through academic publications and conference contributions, but also through public reports and a handbook for practitioners and students. These reports and handbooks support identification and application of building blocks of experiencescapes that support building resilience in communities. Finally, the knowledge generated in the project will contribute to the development of curricula of various educational programmes at Breda University of Applied Sciences by expanding the scope of experience design into the area of people-to-people relationships.