Objectives: To investigate immediate changes in walking performance associated with three implicit motor learning strategies and to explore patient experiences of each strategy. Design: Participants were randomly allocated to one of three implicit motor learning strategies. Within-group comparisons of spatiotemporal parameters at baseline and post strategy were performed. Setting: Laboratory setting. Subjects: A total of 56 community-dwelling post-stroke individuals. Interventions: Implicit learning strategies were analogy instructions, environmental constraints and action observation. Different analogy instructions and environmental constraints were used to facilitate specific gait parameters. Within action observation, only videotaped gait was shown. Main measures: Spatiotemporal measures (speed, step length, step width, step height) were recorded using Vicon 3D motion analysis. Patient experiences were assessed by questionnaire. Results: At a group level, three of the four analogy instructions (n=19) led to small but significant changes in speed (d=0.088m/s), step height (affected side d=0.006m) and step width (d=–0.019m), and one environmental constraint (n=17) led to significant changes in step width (d=–0.040m). At an individual level, results showed wide variation in the magnitude of changes. Within action observation (n=20), no significant changes were found. Overall, participants found it easy to use the different strategies and experienced some changes in their walking performance. Conclusion: Analogy instructions and environmental constraints can lead to specific, immediate changes in the walking performance and were in general experienced as feasible by the participants. However, the response of an individual patient may vary quite considerably.
DOCUMENT
Academic design research often fails to contribute to design practice. This dissertation explores how design research collaborations can provide knowledge that design professionals will use in practice. The research shows that design professionals are not addressed as an important audience between the many audiences of collaborative research projects. The research provides insight in the learning process by design professionals in design research collaborations and it identifies opportunities for even more learning. It shows that design professionals can learn about more than designing, but also about application domains or project organization.
DOCUMENT
OBJECTIVE: This scoping review aimed to gather current knowledge on accurately identifying and distinguishing between non-frail, pre-frail, and frail older adults using gait and daily physical activity (DPA) parameters and/or models that combine gait with DPA parameters in both controlled and daily life environments.METHODS: Following PRISMA-ScR guidelines, a systematic search was conducted across seven databases using key terms: "frail", "gait or walk", "IMU", and "age". Studies were included if they focused on gait analysis using Inertial Measurement Units (IMUs) for walking distances greater than 10 meters. Extracted data included study design, gait and DPA outcomes, walking conditions, and classification model performance. Gait parameters were grouped into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, and physical activity pattern.RESULTS: A total of 15 cross-sectional studies involving 2,366 participants met the inclusion criteria. Gait analysis showed (pre)frail individuals had slower, shorter steps with longer stride times compared to non-frail individuals. Pre-frail individuals showed distinct gait patterns in periodicity, magnitude range, and variability. In daily activities, (pre)frail individuals displayed shorter, fragmented walking periods and longer transitions between positions. Walking variation identified pre-frail status, showing progressive decreases from non-frail to frail states. Combined gait and daily physical activity models achieved over 97% accuracy, sensitivity and specificity in distinguishing between groups.DISCUSSION: This review provides an updated synthesis of the relationship between various gait and/or DPA parameters and physical frailty, highlighting gaps in pre-frailty detection and the variability in measurement protocols. It underscores the potential of long-term, sensor-based monitoring of daily physical activity for advancing pre-frailty screening and guiding future clinical trials. Structured Abstract BACKGROUND: Changes in gait and physical activity are critical indicators of frailty. With advancements in wearable sensor technology, long-term gait analysis using acceleration data has become more feasible. However, the contribution of parameters beyond gait speed, such as gait dynamics and daily physical activity (DPA), in identifying frail and pre-frail individuals remains unclear.OBJECTIVE: This scoping review aimed to gather knowledge on accurately identifying and differentiating physical pre-frail and frail individuals from non-frail individuals using gait parameters alone or models that combine gait and DPA parameters, both in controlled settings and daily life environments.METHODS: The review followed PRISMA-ScR guidelines. A search strategy incorporating key terms-"frail", "gait or walk", "IMU", and "age"-was applied across seven databases from inception to March 1, 2024. Studies were included if they focused on gait analysis in controlled or daily environments using Inertial Measurement Units (IMUs) and involved walking distances longer than 10 meters. Data on walking conditions, gait outcomes, classification methods, and results were extracted. Gait parameters were categorized into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, physical activity pattern.RESULTS: A total of 15 cross-sectional observational studies met the eligibility criteria, covering 2,366 participants, with females representing 27%-80% of the sample and ages ranging from 60 to 92 years. Regarding gait parameters, (pre)frail individuals exhibited longer stride times, slower walking speeds, shorter steps, and reduced cadence compared to non-frail individuals. In three studies, pre-frail could be distinguished from the non-frail and frail group through gait periodicity, range of magnitude, and gait variability. DPA patterns differed between groups, with (pre)frail individuals showing shorter and more fragmented walking periods, brief walking bouts and longer postural transitions. Walking bout variation (CoV) effectively identified pre-frail status, decreasing 53.73% from non-frail to pre-frail, and another 30.87% from pre-frail to frail. Models combining both gait and DPA parameters achieved the highest accuracy (97.25%), sensitivity (98.25%), and specificity (98.25%) in distinguishing between groups.DISCUSSION: This scoping review provides an updated overview of the current knowledge and gaps in understanding the relationship between gait parameters across different domains and DPA parameters along with physical frailty. Significant variability in gait measurement methods and protocols complicates direct comparisons between studies. The review emphasizes the need for further research, particularly in pre-frailty screening, and underscores the potential of inertial sensor-based long-term monitoring of daily physical activity for future clinical trials.
DOCUMENT
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.