Academic design research often fails to contribute to design practice. This dissertation explores how design research collaborations can provide knowledge that design professionals will use in practice. The research shows that design professionals are not addressed as an important audience between the many audiences of collaborative research projects. The research provides insight in the learning process by design professionals in design research collaborations and it identifies opportunities for even more learning. It shows that design professionals can learn about more than designing, but also about application domains or project organization.
DOCUMENT
BACKGROUND: The design and manufacturing of effective foot orthoses is a complex multidisciplinary problem involving biomedical and gait pattern aspects, technical material and geometric design elements as well as psychological and social contexts. This complexity contributes to the current trial-and-error and experience-based orthopedic footwear practice in which a major part of the expertise is implicit. This hampers knowledge transfer, reproducibility and innovation. OBJECTIVE/METHODS: A systematic review of literature has been performed to find evidence of explicit knowledge, quantitative guidelines and design motivations of pedorthists. RESULTS: 17 studies have been included. No consensus is found on which measurable parameters ensure proper foot and ankle functioning. Parameters suggested are: neutral foot positioning and control of rearfoot motion, maximum arch, but also tibial internal/external rotation as well as a three point force system. Also studies evaluating foot orthoses centering on the diagnosis or orthosis type find no clear guidelines for treatment or for measuring the effectiveness. CONCLUSIONS: A gap in the translation from diagnosis to a specific, customized and quantified effective orthosis design is identified. Suggested solutions are both top-down, fitting of patient data in simulations, as well as bottom-up, quantifying current practices of pedorthists in order to develop new practical guidelines and evidence-based procedures.
DOCUMENT
Objectives: To investigate immediate changes in walking performance associated with three implicit motor learning strategies and to explore patient experiences of each strategy. Design: Participants were randomly allocated to one of three implicit motor learning strategies. Within-group comparisons of spatiotemporal parameters at baseline and post strategy were performed. Setting: Laboratory setting. Subjects: A total of 56 community-dwelling post-stroke individuals. Interventions: Implicit learning strategies were analogy instructions, environmental constraints and action observation. Different analogy instructions and environmental constraints were used to facilitate specific gait parameters. Within action observation, only videotaped gait was shown. Main measures: Spatiotemporal measures (speed, step length, step width, step height) were recorded using Vicon 3D motion analysis. Patient experiences were assessed by questionnaire. Results: At a group level, three of the four analogy instructions (n=19) led to small but significant changes in speed (d=0.088m/s), step height (affected side d=0.006m) and step width (d=–0.019m), and one environmental constraint (n=17) led to significant changes in step width (d=–0.040m). At an individual level, results showed wide variation in the magnitude of changes. Within action observation (n=20), no significant changes were found. Overall, participants found it easy to use the different strategies and experienced some changes in their walking performance. Conclusion: Analogy instructions and environmental constraints can lead to specific, immediate changes in the walking performance and were in general experienced as feasible by the participants. However, the response of an individual patient may vary quite considerably.
DOCUMENT
OBJECTIVE: This scoping review aimed to gather current knowledge on accurately identifying and distinguishing between non-frail, pre-frail, and frail older adults using gait and daily physical activity (DPA) parameters and/or models that combine gait with DPA parameters in both controlled and daily life environments.METHODS: Following PRISMA-ScR guidelines, a systematic search was conducted across seven databases using key terms: "frail", "gait or walk", "IMU", and "age". Studies were included if they focused on gait analysis using Inertial Measurement Units (IMUs) for walking distances greater than 10 meters. Extracted data included study design, gait and DPA outcomes, walking conditions, and classification model performance. Gait parameters were grouped into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, and physical activity pattern.RESULTS: A total of 15 cross-sectional studies involving 2,366 participants met the inclusion criteria. Gait analysis showed (pre)frail individuals had slower, shorter steps with longer stride times compared to non-frail individuals. Pre-frail individuals showed distinct gait patterns in periodicity, magnitude range, and variability. In daily activities, (pre)frail individuals displayed shorter, fragmented walking periods and longer transitions between positions. Walking variation identified pre-frail status, showing progressive decreases from non-frail to frail states. Combined gait and daily physical activity models achieved over 97% accuracy, sensitivity and specificity in distinguishing between groups.DISCUSSION: This review provides an updated synthesis of the relationship between various gait and/or DPA parameters and physical frailty, highlighting gaps in pre-frailty detection and the variability in measurement protocols. It underscores the potential of long-term, sensor-based monitoring of daily physical activity for advancing pre-frailty screening and guiding future clinical trials. Structured Abstract BACKGROUND: Changes in gait and physical activity are critical indicators of frailty. With advancements in wearable sensor technology, long-term gait analysis using acceleration data has become more feasible. However, the contribution of parameters beyond gait speed, such as gait dynamics and daily physical activity (DPA), in identifying frail and pre-frail individuals remains unclear.OBJECTIVE: This scoping review aimed to gather knowledge on accurately identifying and differentiating physical pre-frail and frail individuals from non-frail individuals using gait parameters alone or models that combine gait and DPA parameters, both in controlled settings and daily life environments.METHODS: The review followed PRISMA-ScR guidelines. A search strategy incorporating key terms-"frail", "gait or walk", "IMU", and "age"-was applied across seven databases from inception to March 1, 2024. Studies were included if they focused on gait analysis in controlled or daily environments using Inertial Measurement Units (IMUs) and involved walking distances longer than 10 meters. Data on walking conditions, gait outcomes, classification methods, and results were extracted. Gait parameters were categorized into four domains: spatio-temporal, frequency, amplitude, and dynamic gait. DPA parameters were synthesized into three categories: postural and transition, variability, physical activity pattern.RESULTS: A total of 15 cross-sectional observational studies met the eligibility criteria, covering 2,366 participants, with females representing 27%-80% of the sample and ages ranging from 60 to 92 years. Regarding gait parameters, (pre)frail individuals exhibited longer stride times, slower walking speeds, shorter steps, and reduced cadence compared to non-frail individuals. In three studies, pre-frail could be distinguished from the non-frail and frail group through gait periodicity, range of magnitude, and gait variability. DPA patterns differed between groups, with (pre)frail individuals showing shorter and more fragmented walking periods, brief walking bouts and longer postural transitions. Walking bout variation (CoV) effectively identified pre-frail status, decreasing 53.73% from non-frail to pre-frail, and another 30.87% from pre-frail to frail. Models combining both gait and DPA parameters achieved the highest accuracy (97.25%), sensitivity (98.25%), and specificity (98.25%) in distinguishing between groups.DISCUSSION: This scoping review provides an updated overview of the current knowledge and gaps in understanding the relationship between gait parameters across different domains and DPA parameters along with physical frailty. Significant variability in gait measurement methods and protocols complicates direct comparisons between studies. The review emphasizes the need for further research, particularly in pre-frailty screening, and underscores the potential of inertial sensor-based long-term monitoring of daily physical activity for future clinical trials.
DOCUMENT
Author supplied from the article: ABSTRACT Increasing global competition in manufacturing technology puts pressure on lead times for product design and production engineering. By the application of effective methods for systems engineering (engineering design), the development risks can be addressed in a structured manner to minimise chances of delay and guarantee timely market introduction. Concurrent design has proven to be effective in markets for high tech systems; the product and its manufacturing means are simultaneously developed starting at the product definition. Unfortunately, not many systems engineering methodologies do support development well in the early stage of the project where proof of concept is still under investigation. The number of practically applicable tools in this stage is even worse. Industry could use a systems engineering method that combines a structured risk approach, concurrent development, and especially enables application in the early stage of product and equipment design. The belief is that Axiomatic Design can provide with a solid foundation for this need. This paper proposes a ‘Constituent Roadmap of Product Design’, based on the axiomatic design methodology. It offers easy access to a broad range of users, experienced and inexperienced. First, it has the ability to evaluate if knowledge application to a design is relevant and complete. Secondly, it offers more detail within the satisfaction interval of the independence axiom. The constituent roadmap is based on recent work that discloses an analysis on information in axiomatic design. The analysis enables better differentiation on project progression in the conceptual stage of design. The constituent roadmap integrates axiomatic design and the methods that harmonise with it. Hence, it does not jeopardise the effectiveness of the methodology. An important feature is the check matrix, a low threshold interface that unlocks the methodology to a larger audience. (Source - PDF presented at ASME IMECE (International Mechanical Engineering Congress and Exposition
DOCUMENT
Deze handreiking is ontwikkeld voor designers en ontwikkelaars van AI-systemen, met als doel om te zorgen dat deze systemen voldoende uitlegbaar zijn. Voldoende betekent hier dat het voldoet aan de wettelijke eisen vanuit AI Act en AVG en dat gebruikers het systeem goed kunnen gebruiken. In deze handreiking leggen we ten eerste uit wat de eisen zijn die er wettelijk gelden voor uitlegbaarheid van AI-systemen. Deze zijn afkomstig uit de AVG en de AI-Act. Vervolgens leggen we uit hoe AI gebruikt wordt in de financiële sector en werken één probleem in detail uit. Voor dit probleem laten we vervolgens zien hoe de user interface aangepast kan worden om de AI uitlegbaar te maken. Deze ontwerpen dienen als prototypische voorbeelden die aangepast kunnen worden op nieuwe problemen. Deze handreiking is gebaseerd op uitlegbaarheid van AI-systemen voor de financiële sector. De adviezen kunnen echter ook gebruikt worden in andere sectoren.
MULTIFILE
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how various printing parameters influence their morphing capabilities. The experimental approach integrates design and slicing, printing using fused deposition modeling (FDM), and a post-printing activation phase in a controlled laboratory environment. This process aims to replicate the external stimuli that induce shape morphing, highlighting the dynamic potential of 4D printing. Utilizing Taguchi’s Design of Experiments (DoE), this study examines the effects of printing speed, layer height, layer width, nozzle temperature, bed temperature, and activation temperature on the morphing behavior. The analysis includes precise measurements of deformation parameters, providing a comprehensive understanding of the morphing process. Regression models demonstrate strong correlations with observed data, suggesting their effectiveness in predicting responses based on control parameters. Additionally, finite element analysis (FEA) modeling successfully predicts the performance of these structures, validating its application as a design tool in 4D printing. This research contributes to the understanding of 4D printing dynamics and offers insights for optimizing printing processes to harness the full potential of shape-morphing materials. It sets a foundation for future research, particularly in exploring the relationship between printing parameters and the functional capabilities of 4D-printed structures.
DOCUMENT
From the article: "Individuals with dementia often experience a decline in their ability to use language. Language problems have been reported in individuals with dementia caused by Alzheimer’s disease, Parkinson’s disease or degeneration of the fronto-temporal area. Acoustic properties are relatively easy to measure with software, which promises a cost-effective way to analyze larger discourses. We study the usefulness of acoustic features to distinguish the speech of German-speaking controls and patients with dementia caused by (a) Alzheimer’s disease, (b) Parkinson’s disease or (c) PPA/FTD. Previous studies have shown that each of these types affects speech parameters such as prosody, voice quality and fluency (Schulz 2002; Ma, Whitehill, and Cheung 2010; Rusz et al. 2016; Kato et al. 2013; Peintner et al. 2008). Prior work on the characteristics of the speech of individuals with dementia is usually based on samples from clinical tests, such as the Western Aphasia Battery or the Wechsler Logical Memory task. Spontaneous day-to-day speech may be different, because participants may show less of their vocal abilities in casual speech than in specifically designed test scenarios. It is unclear to what extent the previously reported speech characteristics are still detectable in casual conversations by software. The research question in this study is: how useful for classification are acoustic properties measured in spontaneous speech."
MULTIFILE
Office well-being aims to explore and support a healthy, balanced and active work style in office environments. Recent work on tangible user interfaces has started to explore the role of physical, tangible interfaces as active interventions to explore how to tackle problems such as inactive work and lifestyles, and increasingly sedentary behaviours. We identify a fragmented research landscape on tangible Office well-being interventions, missing the relationship between interventions, data, design strategies, and outcomes, and behaviour change techniques. Based on the analysis of 40 papers, we identify 7 classifications in tangible Office well-being interventions and analyse the intervention based on their role and foundation in behaviour change. Based on the analysis, we present design considerations for the development of future tangible Office well-being design interventions and present an overview of the current field and future research into tangible Office well-being interventions to design for a healthier and active office environment.
DOCUMENT
In this paper, we explore the design of web-based advice robots to enhance users' confidence in acting upon the provided advice. Drawing from research on algorithm acceptance and explainable AI, we hypothesise four design principles that may encourage interactivity and exploration, thus fostering users' confidence to act. Through a value-oriented prototype experiment and value-oriented semi-structured interviews, we tested these principles, confirming three of them and identifying an additional principle. The four resulting principles: (1) put context questions and resulting advice on one page and allow live, iterative exploration, (2) use action or change oriented questions to adjust the input parameters, (3) actively offer alternative scenarios based on counterfactuals, and (4) show all options instead of only the recommended one(s), appear to contribute to the values of agency and trust. Our study integrates the Design Science Research approach with a Value Sensitive Design approach.
MULTIFILE