Online Gaming and Playful Organization explores the cultural impact of gaming on organizations. While gaming is typically a form of entertainment, this book argues that gaming communities can function as a useful analogue for work organizations because both are comprised of diverse members who must communicate and collaborate to solve complex problems.By examining the impact of gaming beyond its own context, this book argues that one can apply numerous lessons from the virtual world of online games to the “real” world of businesses, schools, and other professional communities. Most notably, it articulates the concept of playful organizations, defined as organizations in which the ability to play has become so institutionalized that it is spontaneous, creative, and enjoyable.Based on original research, Online Gaming and Playful Organization establishes an interdisciplinary framework for further conceptual and empirical investigation into this topic, with the dual goals of a better understanding of the role of online games and virtual worlds, and of the possible structural and cultural transformation of public and private organizations.
UNLABELLED: Public library makerspaces intend to contribute to the development of children from marginalized communities through the education of digital technology and creativity and by stimulating young people to experience new social roles and develop their identity. Learning in these informal settings puts demands on the organization of the makerspace, the activities, and the support of the children. The present study investigates how children evaluate their activities and experiences in a public library makerspace both in the after-school programs and during school visits. Furthermore, it examines the effectiveness of the training program for the makerspace coaches. The study covers self-evaluations by children ( n = 307), and interviews with children ( n = 27) and makerspace coaches ( n = 11). Children report a lot of experiences concerning creating (maker skills, creativity) and maker mindset (motivation, persistence, confidence). Experiences with collaboration (helping each other) were mentioned to a lesser extent. Critical features of the training program for makerspace coaches were (i) adaptation to the prior knowledge, skills and needs of makerspace coaches, (ii) input of expert maker educators, (iii) emphasis on learning by doing, (iv) room for self-employed learning, and (v) collaboration with colleagues. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41979-022-00070-w.
The central aim of this thesis was to increase understanding of designing vocational learning environments at the school–work boundary. Four studies were conducted, focusing on learning environment designs at the school–work boundary and on design considerations of the actors involved in their construction, both from the world of school and the world of work.
In 2021, Citython editions were held for the European cities of Eindhoven (Netherlands), Bilbao and Barcelona (Spain), Hamburg (Germany), and Lublin (Poland). Within this project, BUAS contributed to the organization of CITYTHON Eindhoven in cooperation with CARNET (an initiative by CIT UPC) and City of Eindhoven – an event which gives young talent the opportunity to work with mentors and experts for the development of innovative urban solutions. Participants of CITYTHON Eindhoven worked on three challenges:- Traffic safety in school zones - Travel to the campus- Make the city healthy The event took place between 18 May and 2 June 2021 with various experts, for example from ASML, City of Eindhoven and University of Amsterdam, giving inspirational talks and mentoring students throughout the ideation and solutions development process. The teams presented their solutions during the Dutch Technology Week and the winners were announced by Monique List-de Roos (Alderman Mobility and Transport, City of Eindhoven) on 2 June 2021. The role of BUAS within this project was to assist City of Eindhoven with the development of the challenges to be tackled by the participating teams, and find relevant speakers and mentors who would be supporting the students for the development of their solutions and jury members who would determine the winning teams. The project ended with a round table “Green and Safe Mobility for all: 5 Smart City(thon) Case studies” on November 17 organized as part of Smart City Expo World Congress 2021 in Barcelona. This project is funded by EIT Urban Mobility, an initiative of the European Institute of Innovation and Technology (EIT), a body of the European Union. EIT Urban Mobility acts to accelerate positive change on mobility to make urban spaces more livable. Learn more: eiturbanmobility.eu.Collaborating partnersCARNET (Lead organisation); Barcelona Institute of Technology for Habitat; Barcelona City Council; Bilbao City Hall; City of Hamburg; City of Eindhoven,; City of Lublin; Digital Hub Logistics Hamburg; Technical University of Catalonia, Tecnalia; UPC Technology Center.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes.The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool [Zuyd]), “Making Industry Sustainable” (Hogeschool Rotterdam [HRotterdam]), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht [HUtrecht]) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab [ILab]).The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives.The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science [UASs] and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional governments/network organizations that will facilitate research, demand articulation and professionalization of students and professionals.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.