Bumping Elbows explores a workflow integrating 3D body scanning technology with robotic knitting to create personalized garments. Traditional 3D knitting development relies on 2D drafts and panels, rooted in industrial flatbed knitting practices. Our approach leverages accurate topology measurements from 3D body scans to directly inform garment design and production, allowing for custom fits to unique body shapes. We will demonstrate this process through live 3D scanning and software demonstrations, highlighting the challenges and opportunities integrating body scans and knitting techniques like goring. Our included software addresses limitations of previous work and outlines advancements needed for broader research adoption, emphasizing the potential of combining 3D scanning with robotic knitting. This method offers enhanced personalization and sustainability in garment production, showcasing the ongoing challenges and advancements in achieving precision in robotic knitting.
DOCUMENT
An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111–120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and processing technology, in particular in structured light scanners, have produced a new generation of easy to transport, fast, inexpensive, accurate and high resolution scanners. The systems are now moving to the consumer market with high impact for the garment industry. Since the internet sales of garments is rapidly increasing, information on body dimensions become essential to guarantee a good fit, and 3D scanners are expected to play a major role.
DOCUMENT
Technological development offers new opportunities that could changedesign processes. The present study explores the possibilities of technologies likevirtual reality and 3D scan in the furniture design process. For this purpose, a cocreation process with help of new technologies was carried out from initial ideationto 3D modelling. Each tool has been characterized in terms of user experiencemeasured by questionnaire. This research validates a design process of furniturebased on immersive technology and provide some recommendations for theimplementation and improvement of this process.
LINK