In this article we investigate the change in wetting behavior of inkjet printed materials on either hydrophilic or hydrophobic plasma treated patterns, to determine the minimum obtainable track width using selective patterned μPlasma printing. For Hexamethyl-Disiloxane (HMDSO)/N2 plasma, a decrease in surface energy of approx. 44 mN/m was measured. This resulted in a change in contact angle for water from <10 up to 105 degrees, and from 32 up to 46 degrees for Diethyleneglycol-Dimethaclylate (DEGDMA). For both the nitrogen, air and HMDSO/N2 plasma single pixel wide track widths of approx. 320 μm were measured at a plasma print height of 50 μm. Combining hydrophilic pretreatment of the glass substrate, by UV/Ozone or air μPlasma printing, with hydrophobic HMDSO/N2 plasma, the smallest hydrophilic area found was in the order of 300 μm as well.
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers (polyesters), produced by a wide range of bacterial strains. They are gaining increasing interest in different research fields, due to their sustainability and environmental-friendly properties. Additionally, PHAs are also biocompatible, which makes them interesting for tissue engineering and regenerative medicine. At the same time, they are characterized by properties ideal for 3D printing processing, such as high tensile strength, easy processability and thermoplasticity. To date, the techniques employed in PHAs printing mostly include fused deposition modeling (FDM), selective laser sintering (SLS), electrospinning (ES), and melt electrospinning (MES). In this review, we provide a comprehensive summary of the versatile and sustainably sourced bacterial PHAs, also modified by blending with natural and synthetic polymers (e.g., PLA, PGA) or combining them with inorganic fillers (e.g., nanoparticles, glass), used for 3D printing in biomedical applications. We specify focus on the printing conditions and the properties of the obtained scaffolds with a focus on the print resolution and scaffolds mechanical and biological properties. New perspectives in the emerging field of PHAs biofabrication process, characterized by sustainability and efficiency of the scaffold production, are demonstrated. The use of alternative printing techniques, i.e. melt electrowriting (MEW), and producing smart and functional materials degrading on demand under in vitro and in vivo conditions is proposed.
LINK
Dit onderzoek richt zich op het verkleinen van de kunstgrasberg. Gezamenlijk met ketenorganisatie GBN AGR en Joosten Group is een verkenning van 3D printen van Recycled Turf Agglomerate (RTA) uitgevoerd. Het materiaalonderzoek, verricht door Saxion Thermo Plastic composites Application Centre, aangevuld met datagegevens van GNB AGR en vergelijkingen met bestaand 3D printfilament leverde al inzichten op. Ook is een 3D printer gemodificeerd om gerecycled granulaat te 3D printen. Hierop zijn tests met verschillende recycled materiaal gedaan. Echter bleek het huidige RTA te vervuild om 3D prints te maken. Een alternatieve RTA, welke extra zuiveringsstappen is doorgaan, was goed 3D printbaar.
MULTIFILE
3D betonprinten is een techniek met een grote potentie voor de bouwsector . Het in 2018 geëindigde RAAK-mkb KONKREET project, heeft voor lectoraat Industrial Design en de betrokken partners veel inzichten op gebied van 3D betonprinten opgeleverd. (van Beuren & Vrooijink, 2018) Één van deze inzichten is dat door het laagsgewijs opbouwen van het object bij 3D betonprinten het wapenen nog als uitdaging kan worden gezien. Immers als de wapening er al is wanneer de printkop er langs komt zit deze de printkop in de weg, en wanneer deze later aangebracht moet worden kan het beton al zijn uitgehard. Dit ‘wapeningsprobleem’ zorgt ervoor dat wapening uit het printvlak in-situ niet te realiseren is. Binnen het KONKREET project is hiervoor als oplossing een concept met technisch textiel bedacht om te wapenen. Hierbij kan het vormbare textiel tijdens het printproces tegen het oppervlak worden aangedrukt. De partners van dit project, Ter Steege advies & innovatie en Vertico XL printing, willen bewijzen dat door het concept verder uit te werken een belangrijke drempel van het 3D betonprinten kan worden weggenomen. Het doel is om een methode te ontwikkelen om in-situ wapening in de vorm van technisch textiel te realiseren bij 3D geprint beton. Dit vraagt om een creatieve oplossing. Om dit te doen zijn er 6 projectstappen: 1. Belastingseis vaststellen 2. Geschikt textiel selecteren 3. Methode ontwikkelen voor het aanbrengen van textiel 4. Onderzoek naar binding textiel aan het beton 5. Onderzoek naar de mechanische eigenschappen van het nieuwe materiaal 6. Disseminatie van de opgedane kennis. Belangrijk is om hierbij te benoemen dat het om een verkennend onderzoek gaat waarbij onderzocht wordt of het een kansrijke wapeningsmethode kan zijn.
De wereldbevolking groeit van 7 miljard nu naar 9 miljard in 2040. De productiegroei van voedsel loopt hierop flink achter. Uit onderzoek van de FAO in 2011 komt naar voren dat wereldwijd elk jaar 1,3 miljard ton voedsel verloren gaat, ruim een derde van de voedselproductie. Binnen de EU gooien we 20% van het totaal voor de EU inwoners geproduceerde voedsel weg, inclusief het onvermijdbare verlies. Dat komt neer op 173 kg per EU inwoner per jaar. Ongeveer de helft daarvan wordt weggegooid in de productieketen tot en met de supermarkt. Agri-food reststromen zijn te vinden bij de voedselindustrie, boeren, veilingen, supermarkten etc. Die worden momenteel laagwaardig verwerkt in diervoeder, compost, potgrond, vergisting etc. Hoogwaardig verwerken gebeurt zelden, bv via de Voedselbank of de Verspillingsfabriek (soepen etc.). Dit project heeft primair als doel om reststromen vanuit de food industrie hoogwaardig te verwaarden, met 3D food printing als primaire technologie. 3D food printing is in 2006 ontstaan en sinds 2016 in een stroomversnelling gekomen. (Michelin) chefs, chocolatiers, patissiers, fooddesigners en catering hebben deze nieuwe techniek nu omarmd. Vanuit de voedselindustrie is er ook veel belangstelling, met name voor industriële toepassing en voorgevulde cartridges. Daarmee kan het Nespresso businessmodel voor een doorbraak in 3Dfoodprinting zorgen, een goedkope 3Dprinter voor consumenten waarbij verdiend wordt aan de cartridges. Belangrijk dus om toepassingen te vinden die de mogelijkheden van 3D food printing voor verwaarding van reststromen volop benutten.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.