Plant photosynthesis and biomass production are associated with the amount of intercepted light, especially the light distribution inside the canopy. Three virtual canopies (n = 80, 3.25 plants/m2) were constructed based on average leaf size of the digitized plant structures: ‘small leaf’ (98.1 cm2), ‘medium leaf’ (163.0 cm2) and ‘big leaf’ (241.6 cm2). The ratios of diffuse light were set in three gradients (27.8%, 48.7%, 89.6%). The simulations of light interception were conducted under different ratios of diffuse light, before and after the normalization of incident radiation. With 226.1% more diffuse light, the result of light interception could increase by 34.4%. However, the 56.8% of reduced radiation caused by the increased proportion of diffuse light inhibited the advantage of diffuse light in terms of a 26.8% reduction in light interception. The big-leaf canopy had more mutual shading effects, but its larger leaf area intercepted 56.2% more light than the small-leaf canopy under the same light conditions. The small-leaf canopy showed higher efficiency in light penetration and higher light interception per unit of leaf area. The study implied the 3D structural model, an effective tool for quantitative analysis of the interaction between light and plant canopy structure.
MULTIFILE
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.
MULTIFILE
Background: In clinical practice, nurses’ attitudes regarding older patients are important in relation to quality of care. The Older People in Acute Care Survey (OPACS) is an instrument measuring hospital nurses attitudes regarding older patients and is validated in Australia and the USA. The OPACS is translated in Dutch language and content validity of this translation is previously assessed, presenting questionable results. Measurement instruments, however, cannot be “validated” based on content validity evidence alone. Judgmental evidence and statistical analysis should be combined to fully evaluate content domain definition and representation and guide further development. Objective: Assess structural validity and reliability to fully evaluate the OPACS for use in the Netherlands, complementing previous conducted content validity results. Design: Cross-sectional. Setting: Three general hospitals in the Netherlands. Participants: 201 registered nurses. Methods: Confirmatory factor analysis was used to assess the structural validity. Reliability was assessed with Cronbach’s alpha. Results: OPACS Section A (measuring practice experiences) demonstrated to have acceptable structural validity- and good reliability outcomes after exclusion of two items (model fit: x² [df=537]=8475.40, p <0.001, CFI=0.96, TLI=0.96, RMSEA=0.21; Cronbach’s alpha=0.82). Section B (measuring general opinion) demonstrated to have inadequate structural validity outcomes (model fit: x² [df=1127]=9200.29, p<0.001, CFI=0.68, TLI=0.67, RMSEA=0.15). None of the items contributed significant to the factor and therefore no further analysis could be performed (range p(>|z|)= 0.551 -0 .788). Conclusion: Even though structural validity for section A was acceptable, content validity scores of a majority of items in this subscale were low, resulting in questionable use of this subscale for the Dutch context. The findings of this study, in relation to the earlier findings regarding content validity, justify the conclusion that use of the Dutch OPACS in clinical practice and research is not recommended. Given these findings, future research should pursue the development or (cross-cultural) validation of other instruments measuring hospital nurses attitudes towards older patients for the Dutch cultural context. Furthermore, this study demonstrated the influence of cultural differences on measurement instruments and the need for rigorous research before using a measurement instrument in a new culture or context.
DOCUMENT
The additive manufacturing (AM) of high-quality products requires knowledge of the 3D-printing process and the related design guidelines. Allthough AM has been around for some years, many engineers still lack this knowledge. Therefore, Fontys University of Applied Sciences sets great store by training of engineers, education of engineering students and knowledge sharing on this topic. As an appetiser, this article offers a beginner’s course.
DOCUMENT
Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation between epochs can be handled. The determination of transformation parameters between two or more coordinate sets, determined by geodetic monitoring measurements, can be handled as a least squares adjustment problem. It can be solved without linearisation of the functional model, if it concerns an affine, similarity or congruence transformation in one-, two- or three-dimensional space. If the functional model describes more than such a transformation, it is hardly ever possible to find a direct solution for the transformation parameters. Linearisation of the functional model and applying least squares formulas is then an appropriate mode of working. The adjustment model is given as a model of observation equations with constraints on the parameters. The starting point is the affine transformation, whose parameters are constrained to get the parameters of the similarity or congruence transformation. In this way the use of Euler angles is avoided. Because the model is linearised, iteration is necessary to get the final solution. In each iteration step approximate coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get approximate coordinates. For the similarity and congruence transformation the approximate coordinates have to comply to constraints. To achieve this, use is made of the singular value decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment model total station measurements in two epochs of monitored buildings are analysed. Coordinate sets with full, rank deficient covariance matrices are determined from the measurements and adjusted with the proposed model. Testing the adjustment for deformations results in detection of the simulated deformations."
MULTIFILE
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors that influence reconstruction accuracy, the lighting conditions at capture time remain one of the most influential, yet widely neglected, variables. This review provides a comprehensive survey of classical and modern 3D reconstruction techniques, including Structure from Motion (SfM), Multi-View Stereo (MVS), Photometric Stereo, and recent neural rendering approaches such as Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS), while critically evaluating their performance under varying illumination conditions. We describe how lighting-induced artifacts such as shadows, reflections, and exposure imbalances compromise the reconstruction quality and how different approaches attempt to mitigate these effects. Furthermore, we uncover fundamental gaps in current research, including the lack of standardized lighting-aware benchmarks and the limited robustness of state-of-the-art algorithms in uncontrolled environments. By synthesizing knowledge across fields, this review aims to gain a deeper understanding of the interplay between lighting and reconstruction and provides research directions for the future that emphasize the need for adaptive, lighting-robust solutions in 3D vision systems.
MULTIFILE
Natural disasters are a growing concern around the globe. In the Netherlands, water has always played an important role as both friend and enemy. To quickly analyze and visualise possible disaster outcomes has been really difficult. In collaboration with engineering company Tauw we improved this modellingwith an interdisciplinary team of GIS experts, High performance computing and real time visualisation. In a pilot for the city center of Groningen we developed a 3D version of flooding landscape maps (RUG, 2014) after modelling extreme rainfall. With a flooding landscape map you can see at a glance where water isgoing and where problem areas arise in case of extreme rainfall. Any municipality or county can thus quickly determine which measures are to be taken to prevent for example disruption to traffic or flooding damage tobuildings.
DOCUMENT
In urban planning, 3D modeling and virtual reality (VR) provide new means for involving citizens in the planning process. For municipal government, it is essential to know how effective these means are, to justify investments. In this study, we present a case of using VR in a municipal process of civic participation concerning the redesign of a public park. The process included codesign activities and involved citizens in decision-making through a ballot, using 3D-rendered versions of competing designs. In codesign, 3D-modeling tools were instrumental in empowering citizens to negotiate design decisions, to discuss the quality of designs with experts, and to collectively take decisions. This paper demonstrates that, in a ballot on competing designs with 1302 citizens, VR headsets proved to be equally effective compared to other display technologies in informing citizens during decision making. The results of an additional, controlled experiment indicate that VR headsets provide higher engagement and more vivid memories than viewing the designs on non-immersive displays. By integrating research into a municipal process, we contribute evidence of cognitive and engagement effects of using 3D modeling and immersive VR technologies to empower citizens in participatory urban planning. The case described in the paper concerns a public park; a similar approach could be applied to the design of public installations including media architecture.
DOCUMENT
Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
DOCUMENT
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT