The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
This white paper is the result of a research project by Hogeschool Utrecht, Floryn, Researchable, and De Volksbank in the period November 2021-November 2022. The research project was a KIEM project1 granted by the Taskforce for Applied Research SIA. The goal of the research project was to identify the aspects that play a role in the implementation of the explainability of artificial intelligence (AI) systems in the Dutch financial sector. In this white paper, we present a checklist of the aspects that we derived from this research. The checklist contains checkpoints and related questions that need consideration to make explainability-related choices in different stages of the AI lifecycle. The goal of the checklist is to give designers and developers of AI systems a tool to ensure the AI system will give proper and meaningful explanations to each stakeholder.
MULTIFILE
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
De 2SHIFT SPRONG-groep is een samenwerkingsverband van HAN University of Applied Sciences en Fontys Hogescholen. Onze ambitie is het vergroten van eerlijke kansen op gezond leven. Dit doen we door het vormgeven en versterken van gemeenschappen als fundament voor het creëren van eerlijke kansen op gezond leven. Vanuit deze gemeenschappen wordt in co-creatie gewerkt aan structuur (i.e. systeem), sociale en technologische innovaties. Deze ambitie sluit aan bij de centrale missie KIA Gezondheid en Zorg om bij te dragen aan goede gezondheid en het verkleinen van sociaaleconomische gezondheidsverschillen. Ook draagt het bij aan deelmissie 1. het voorkomen van ziekte, waarbij wij uitgaan van het concept Positieve Gezondheid en Leefomgeving. Én het zorgt voor het verplaatsen van ondersteuning en zorg naar de leefomgeving (deelmissie 2), doordat gemeenschappen hiervoor een stevig fundament vormen. De gemeenschap is geoperationaliseerd als een samenwerking tussen inwonersinitiatieven (i.e. informele actoren) én professionals vanuit wonen, welzijn, zorg en gemeenten (i.e. formele actoren) die bestuurlijk en beleidsmatig worden ondersteund. Toenemend wordt een belangrijke rol en meer verantwoordelijkheid toebedeeld aan inwoners en wordt de noodzaak van sectoroverstijgende, inclusieve samenwerking tussen deze actoren in lokale fieldlabs benadrukt. 2SHIFT start daarom in vier fieldlabs: twee dorpen en twee wijken in (midden-)stedelijke gebieden, waar in vergelijking met groot-stedelijk gebied (zoals Amsterdam, Rotterdam, Den Haag en Utrecht) andere dynamieken en mechanismen een rol spelen bij het creëren van eerlijke kansen op een gezond leven. Om impact in onderwijs en praktijk te realiseren werken we nauw samen met studenten, docenten én met inwoners, professionals, bestuurders en beleidsmakers uit wonen, welzijn, zorg en gemeenten én landelijke kennispartners (“quadruple helix”). 2SHIFT brengt transdisciplinaire expertise én verschillende onderzoeksparadigma’s samen in een Learning Community (LC), waarin bestaande kennis en nieuwe kennis wordt samengebracht en ontwikkeld. Over 8 jaar is 2SHIFT een (inter)nationaal erkende onderzoeksgroep die het verschil maakt.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
A-das-PK; een APK-straat voor rijhulpsystemen Uit recent onderzoek en vragen vanuit de autobranche blijkt een duidelijke behoefte naar goed onderhoud, reparatie en borging van de werking van Advanced Driver Assistance Systems (ADAS), vergelijkbaar met de reguliere APK. Een APK voor ADAS bestaat nog niet, maar de branche wil hier wel op te anticiperen en haar clientèle veilig laten rijden met de rijhulpsystemen. In 2022 worden 30 ADAS’s verplicht en zal de werking van deze systemen ook gedurende de levensduur van de auto gegarandeerd moeten worden. Disfunctioneren van ADAS, zowel in false positives als false negatives kan leiden tot gevaarlijke situaties door onverwacht rijgedrag van het voertuig. Zo kan onverwacht remmen door detectie van een niet bestaand object of op basis van verkeersborden op parallelwegen een kettingbotsing veroorzaken. Om te kijken welke gevolgen een APK heeft voor de autobranche wil A-das-PK voor autobedrijven kijken naar de benodigde apparatuur, opleiding en hard- en software voor een goed werkende APK-straat voor ADAS’s, zodat de kansrijke elementen in een vervolgonderzoek uitgewerkt kunnen worden.