Artificial intelligence (AI) is a technology which is increasingly being utilised in society and the economy worldwide, but there is much disquiet over problematic and dangerous implementations of AI, or indeed even AI itself deciding to do dangerous and problematic actions. These developments have led to concerns about whether and how AI systems currently adhere to and will adhere to ethical standards, stimulating a global and multistakeholder conversation on AI ethics and the production of AI governance initiatives. Such developments form the basis for this chapter, where we give an insight into what is happening in Australia, China, the European Union, India and the United States. We commence with some background to the AI ethics and regulation debates, before proceedings to give an overview of what is happening in different countries and regions, namely Australia, China, the European Union (including national level activities in Germany), India and the United States. We provide an analysis of these country profiles, with particular emphasis on the relationship between ethics and law in each location. Overall we find that AI governance and ethics initiatives are most developed in China and the European Union, but the United States has been catching up in the last eighteen months.
This article explores the decision-making processes in the ongoing development of an AI-supported youth mental health app. Document analysis reveals decisions taken during the grant proposal and funding phase and reflects upon reasons why AI is incorporated in innovative youth mental health care. An innovative multilogue among the transdisciplinary team of researchers, covering AI-experts, biomedical engineers, ethicists, social scientists, psychiatrists and young experts by experience points out which decisions are taken how. This covers i) the role of a biomedical and exposomic understanding of psychiatry as compared to a phenomenological and experiential perspective, ii) the impact and limits of AI-co-creation by young experts by experience and mental health experts, and iii) the different perspectives regarding the impact of AI on autonomy, empowerment and human relationships. The multilogue does not merely highlight different steps taken during human decision-making in AI-development, it also raises awareness about the many complexities, and sometimes contradictions, when engaging in transdisciplinary work, and it points towards ethical challenges of digitalized youth mental health care.
LINK
The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
Het RAAK-MKB project "(G)een Moer Aan" heeft zich gericht op het ontwerpen van een veilige en effectieve ondersteuning van een cobot in een productieomgeving. De focus is hierbij gelegd op productiehandelingen die in veel sectoren voorkomen en die relatief veel arbeidstijd kosten, zoals het indraaien van moeren en bouten in een object. Binnen het project is veel kennis opgedaan dit heeft geresulteerd in gripperontwerpen die in staat zijn een bout in een flens te draaien. Daarnaast is kennis gegeneerd van vision technieken om gaten e.d. te detecteren, en het meenemen van (beleefde) veiligheid in het ontwerp van een cobot systeem. Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als voor de studenten in het onderwijs. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect veilig ontwerpen, worden toekomstige engineers (de studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) Het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) Het realiseren van trainingsmateriaal t.b.v. het rekening houden met en veilig ontwerpen van cobotsystemen. Door o.a. kennis aan te dragen omtrent het doen van een correcte risico analyse van het proces. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodules en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.
Het RAAK-MKB project Aerobic heeft zich gericht op modulaire robotica (grippers, handling en vision systemen) en specifiek binpicking. Binnen dit project is veel kennis opgedaan die heeft geresulteerd in diverse fysieke demonstrators (robotopstellingen t.b.v. binpicking). Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als studenten. Daarnaast is deze kennis praktisch gemaakt en laagdrempelig toepasbaar. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect “binpicking” met behulp van robots, worden toekomstige engineers (onze studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) het realiseren van trainingsmateriaal t.b.v. het praktisch toepassen van kennis die betrekking heeft op de gerealiseerde binpicking-demonstrator binnen het RAAK project. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodule en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.