Over the past three years we have built a practice-oriented, bachelor level, educational programme for software engineers to specialize as AI engineers. The experience with this programme and the practical assignments our students execute in industry has given us valuable insights on the profession of AI engineer. In this paper we discuss our programme and the lessons learned for industry and research.
MULTIFILE
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
In my previous post on AI engineering I defined the concepts involved in this new discipline and explained that with the current state of the practice, AI engineers could also be named machine learning (ML) engineers. In this post I would like to 1) define our view on the profession of applied AI engineer and 2) present the toolbox of an AI engineer with tools, methods and techniques to defy the challenges AI engineers typically face. I end this post with a short overview of related work and future directions. Attached to it is an extensive list of references and additional reading material.
LINK
This study provides a comprehensive analysis of the AI-related skills and roles needed to bridge the AI skills gap in Europe. Using a mixed-method research approach, this study investigated the most in-demand AI expertise areas and roles by surveying 409 organizations in Europe, analyzing 2,563 AI-related job advertisements, and conducting 24 focus group sessions with 145 industry and policy experts. The findings underscore the importance of both general technical skills in AI related to big data, machine learning and deep learning, cyber and data security, large language models as well as AI soft skills such as problemsolving and effective communication. This study sets the foundation for future research directions, emphasizing the importance of upskilling initiatives and the evolving nature of AI skills demand, contributing to an EU-wide strategy for future AI skills development.
MULTIFILE
This article explores the decision-making processes in the ongoing development of an AI-supported youth mental health app. Document analysis reveals decisions taken during the grant proposal and funding phase and reflects upon reasons why AI is incorporated in innovative youth mental health care. An innovative multilogue among the transdisciplinary team of researchers, covering AI-experts, biomedical engineers, ethicists, social scientists, psychiatrists and young experts by experience points out which decisions are taken how. This covers i) the role of a biomedical and exposomic understanding of psychiatry as compared to a phenomenological and experiential perspective, ii) the impact and limits of AI-co-creation by young experts by experience and mental health experts, and iii) the different perspectives regarding the impact of AI on autonomy, empowerment and human relationships. The multilogue does not merely highlight different steps taken during human decision-making in AI-development, it also raises awareness about the many complexities, and sometimes contradictions, when engaging in transdisciplinary work, and it points towards ethical challenges of digitalized youth mental health care.
LINK
Artificial intelligence (AI) is a technology which is increasingly being utilised in society and the economy worldwide, but there is much disquiet over problematic and dangerous implementations of AI, or indeed even AI itself deciding to do dangerous and problematic actions. These developments have led to concerns about whether and how AI systems currently adhere to and will adhere to ethical standards, stimulating a global and multistakeholder conversation on AI ethics and the production of AI governance initiatives. Such developments form the basis for this chapter, where we give an insight into what is happening in Australia, China, the European Union, India and the United States. We commence with some background to the AI ethics and regulation debates, before proceedings to give an overview of what is happening in different countries and regions, namely Australia, China, the European Union (including national level activities in Germany), India and the United States. We provide an analysis of these country profiles, with particular emphasis on the relationship between ethics and law in each location. Overall we find that AI governance and ethics initiatives are most developed in China and the European Union, but the United States has been catching up in the last eighteen months.
DOCUMENT
Whitepaper: The use of AI is on the rise in the financial sector. Utilizing machine learning algorithms to make decisions and predictions based on the available data can be highly valuable. AI offers benefits to both financial service providers and its customers by improving service and reducing costs. Examples of AI use cases in the financial sector are: identity verification in client onboarding, transaction data analysis, fraud detection in claims management, anti-money laundering monitoring, price differentiation in car insurance, automated analysis of legal documents, and the processing of loan applications.
DOCUMENT
The past two years I have conducted an extensive literature and tool review to answer the question: “What should software engineers learn about building production-ready machine learning systems?”. During my research I noted that because the discipline of building production-ready machine learning systems is so new, it is not so easy to get the terminology straight. People write about it from different perspectives and backgrounds and have not yet found each other to join forces. At the same time the field is moving fast and far from mature. My focus on material that is ready to be used with our bachelor level students (applied software engineers, profession-oriented education), helped me to consolidate everything I have found into a body of knowledge for building production-ready machine learning (ML) systems. In this post I will first define the discipline and introduce the terminology for AI engineering and MLOps.
LINK
This white paper is the result of a research project by Hogeschool Utrecht, Floryn, Researchable, and De Volksbank in the period November 2021-November 2022. The research project was a KIEM project1 granted by the Taskforce for Applied Research SIA. The goal of the research project was to identify the aspects that play a role in the implementation of the explainability of artificial intelligence (AI) systems in the Dutch financial sector. In this white paper, we present a checklist of the aspects that we derived from this research. The checklist contains checkpoints and related questions that need consideration to make explainability-related choices in different stages of the AI lifecycle. The goal of the checklist is to give designers and developers of AI systems a tool to ensure the AI system will give proper and meaningful explanations to each stakeholder.
MULTIFILE
In this short article the author reflects on AI’s role in education by posing three questions about its application: choosing a partner, grading assignments, and replacing teachers. These questions prompt discussions on AI’s objectivity versus human emotional depth and creativity. The author argues that AI won’t replace teachers but will enhance those who embrace its potential while understanding its limits. True education, the author asserts, is about inspiring renewal and creativity, not merely transmitting knowledge, and cautions against letting AI define humanity’s future.
LINK