De conceptuation methode maakt gebruik van technieken die het creatief denken van ondernemers stimuleert en benut. Deze technieken zijn afgeleid uit de “theorie van creatief problemen oplossen” (CPS) en de “theorie van inventief denken” (TRIZ). De conceptuation methode maakt gebruik van de creatieve denkkracht van multidisciplinaire teams samengebracht in een “versnellingskamer” waarbij een creatieve uitdager en een creatieve begeleider de verschillende denkvermogens van de deelnemers aanspreken en benutten.
DOCUMENT
BackgroundTo complete their lifecycle, diadromous fish often need to pass anthropogenic barriers in regulated rivers and estuaries (e.g., pumping stations, weirs, hydropower facilities). The safe and timely passage of the endangered catadromous European eel (Anguilla anguilla), through pumping stations is a major concern and European legislation stipulates that safe downstream passage must be provided at hazardous intakes. To implement effective mitigation measures, specific knowledge on eel passage behaviour at barriers is needed.Methods We used acoustic telemetry with acceleration sensors tags, to understand eel movement and activity, migration routes, escapement success, and delay at a tidal pumping station. Tri-axes accelerometers measured eelacceleration in three directions and provide a root-mean-square (RMS) value over the measurement period, providing a proxy for eel activity. A network of 10 receivers was placed along the migration route to track 40 tagged individuals. Telemetry data were analysed using visual investigation of eel detections and Generalised Additive Mixed Models (GAMMs) for analysing acceleration data.Results We found that 75% of the tagged eels migrated to the estuary via the pumping station (PS), 5% used other routes, and 20% did not migrate seaward that season. Acceleration data showed that eels significantly increased theiractivity up until the moment of PS passage, from an overall mean RMS acceleration of 1.04 m/s2 (95% CI=0.93–1.18) when the pumping station started pumping (between 1 up to 4 h before eel passage), to 1.14 m/s2 (95% CI=1.04–1.26) at 10 min before the eels passed through the pumps, and 1.66 m/s2 (95% CI=1.32–2.08) 1 min before passage. Most eels passed the pumping station at night, and we found that eels had the highest movement activity between15:00 and 00:00 with a peak around 19:00, which coincided with the moment of PS passage.Conclusions Acceleration provides a proxy for fish movement activity and our study demonstrates how including accelerometer sensors with telemetry can help understand movement of endangered species at migration barriers. This information is vital for implementing strategies to improve outward migration success, towards the spawning grounds in the Sargasso Sea, and thus the conservation and restoration of eel populations.
LINK
Increasing flexibilisation and personalisation of education creates challenges in terms ofstudents’ social connectedness with each other, with the programme and with lecturers.For this reason, a team of researchers and professors from four universities of applied sciences in the Netherlands carried out research into how a sense of community can be created in learning communities. On the basis of a literature review and design-oriented research, we conducted experiments aimed at fostering social connectedness in eight learning communities. These learning communities were in the domains of Nursing, Healthcare and Welfare Teacher Training, Management in Care, Teacher Training, and Nutrition and Dietetics (part-time, full-time and dual programme variants).
LINK
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.
Krewerd is a small village in the North-East side of the Groningen Gas Field. It has 45 houses in total, 2 of which are included in the P50 risk zone and will therefore be assessed by National Coordinator Groningen (NCG). The rest of the houses are not in the priority list and will not be evaluated within 3 years, according to the existing plans of September 2019. It has been made clear by NCG that the usual engineering process, that includes all sorts of engineering calculations and procedures per NPR9998, cannot be followed in Krewerd. This is because the available engineering capacity is being used by NCG at its maximum, for the prior aim of accelerating the assessment and strengthening works in the P50 region. This project is prepared for presentation to NCG as an experimental project at Krewerd and is based on an initial document prepared by Fons Verheijen , a supportive document prepared by Otto Wassenaar , as well as the recent meeting by the two and Ihsan Engin Bal from Hanze. Furthermore, considering that the NCG is seeking an acceleration of the assessment procedure, the village Krewerd may play a role as a pilot.