Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation between epochs can be handled. The determination of transformation parameters between two or more coordinate sets, determined by geodetic monitoring measurements, can be handled as a least squares adjustment problem. It can be solved without linearisation of the functional model, if it concerns an affine, similarity or congruence transformation in one-, two- or three-dimensional space. If the functional model describes more than such a transformation, it is hardly ever possible to find a direct solution for the transformation parameters. Linearisation of the functional model and applying least squares formulas is then an appropriate mode of working. The adjustment model is given as a model of observation equations with constraints on the parameters. The starting point is the affine transformation, whose parameters are constrained to get the parameters of the similarity or congruence transformation. In this way the use of Euler angles is avoided. Because the model is linearised, iteration is necessary to get the final solution. In each iteration step approximate coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get approximate coordinates. For the similarity and congruence transformation the approximate coordinates have to comply to constraints. To achieve this, use is made of the singular value decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment model total station measurements in two epochs of monitored buildings are analysed. Coordinate sets with full, rank deficient covariance matrices are determined from the measurements and adjusted with the proposed model. Testing the adjustment for deformations results in detection of the simulated deformations."
MULTIFILE
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.
MULTIFILE
The objective of this study was to generate groups of agri-food producers with high affinity in relation to their sustainable waste management practices. The aim of conforming these groups is the development of synergies, knowledge management, and policy- and decision-making by diverse stakeholders. A survey was conducted among the most experienced farmers in the region of Nuevo Urecho, Michoacán, Mexico, and a total of eight variables relating to sustainable waste management practices, agricultural food loss, and the waste generated at each stage of the production process were examined. The retrieved data were treated using the maximum inverse correspondence algorithm and the Galois Lattice was applied to generate clusters of highly affine producers. The results indicate 163 possible elements that generate the power set, and 31 maximum inverse correspondences were obtained. At this point, it is possible to determine the maximum number of relationships, called affinities. In general, all 15 considered farmers shared the measure of revaluation of food waste and 90% of the farmers shared affinity in measures related to ecological care and the proper management of waste. A practical implication of this study is the conformation of highly affine clusters for both policy and strategic decision-making.
LINK
BACKGROUND: Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python.RESULTS: The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS.CONCLUSIONS: pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.
DOCUMENT
See Springer link - available under Open Access
LINK
With summaries in Dutch, Esperanto and English. DOI: 10.4233/uuid:d7132920-346e-47c6-b754-00dc5672b437 "The subject of this study is deformation analysis of the earth's surface (or part of it) and spatial objects on, above or below it. Such analyses are needed in many domains of society. Geodetic deformation analysis uses various types of geodetic measurements to substantiate statements about changes in geometric positions.Professional practice, e.g. in the Netherlands, regularly applies methods for geodetic deformation analysis that have shortcomings, e.g. because the methods apply substandard analysis models or defective testing methods. These shortcomings hamper communication about the results of deformation analyses with the various parties involved. To improve communication solid analysis models and a common language have to be used, which requires standardisation.Operational demands for geodetic deformation analysis are the reason to formulate in this study seven characteristic elements that a solid analysis model needs to possess. Such a model can handle time series of several epochs. It analyses only size and form, not position and orientation of the reference system; and datum points may be under influence of deformation. The geodetic and physical models are combined in one adjustment model. Full use is made of available stochastic information. Statistical testing and computation of minimal detectable deformations is incorporated. Solution methods can handle rank deficient matrices (both model matrix and cofactor matrix). And, finally, a search for the best hypothesis/model is implemented. Because a geodetic deformation analysis model with all seven elements does not exist, this study develops such a model.For effective standardisation geodetic deformation analysis models need: practical key performance indicators; a clear procedure for using the model; and the possibility to graphically visualise the estimated deformations."
DOCUMENT
In our network culture totally different and new spaces have developed. In cyberspace there are new forms of location-based communities. No communities based on membership, ideology or doctrine, but open spaces where people find each other in a shared interest: fluid communities, in jargon called ‘affinity spaces’. Places where people are close to each other because of affinity. (translated from Post, 2018, p. 6)
DOCUMENT
From PLoS website: In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
MULTIFILE
This article demonstrates ‘the stemfie’ to be an interesting current example of the enactment of liveness within media practices. The photo taken of oneself while (or just after) voting and consequently shared with others via online social networks, connects us to an event that is important to us as it unfolds, enacting the two core features of liveness: immediacy and affinity.
DOCUMENT
Purpose: Recent advancements in wearable computing offer opportunities for art galleries to provide a unique experience. However, to ensure successful implementation of this new technology in the visitor industry, it is essential to understand user requirements from a visitor’s point of view. Therefore, the aim of this paper is to investigate visitors’ requirements for the development of a wearable smart glasses augmented reality (AR) application in the museum and art gallery context. Design/methodology/approach: Interviews with 28 art gallery visitors were conducted and an affinity diagram technique was used to analyze the interviews. Findings: The findings reveal that wearable AR is in its infancy and that technical and design issues have to be overcome for a full adoption. It reveals that content requirement, functional requirement, comfort, experience and resistance are important when developing and implementing the wearable AR application in the museum and art gallery contexts. Originality/value: Mapping user requirements in the wearable smart glasses AR context using an affinity diagram is a new approach and therefore contributes to the creation of knowledge in the tourism domain. Practically, the area of wearable technologies and AR within the tourism and visitor industry context is still relatively unexplored, and the present paper provides a first foundation for the implementation of wearable smart glasses AR applications in the museum and art gallery context.
LINK