In Eastern Africa, increasing climate variability and changing socioeconomic conditions are exacerbating the frequency and intensity of drought disasters. Droughts pose a severe threat to food security in this region, which is characterized by a large dependency on smallholder rain-fed agriculture and a low level of technological development in the food production systems. Future drought risk will be determined by the adaptation choices made by farmers, yet few drought risk models … incorporate adaptive behavior in the estimation of drought risk. Here, we present an innovative dynamic drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation decisions and the subsequent adoption of measures, and how this affects drought risk for agricultural production. ADOPT combines socio-hydrological and agent-based modeling approaches by coupling the FAO crop model AquacropOS with a behavioral model capable of simulating different adaptive behavioral theories. In this paper, we compare the protection motivation theory, which describes bounded rationality, with a business-as-usual and an economic rational adaptive behavior. The inclusion of these scenarios serves to evaluate and compare the effect of different assumptions about adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected from 250 households in the Kitui region and discussions with local decision-makers. The results show that estimations of drought risk and the need for emergency food aid can be improved using an agent-based approach: we show that ignoring individual household characteristics leads to an underestimation of food-aid needs. Moreover, we show that the bounded rational scenario is better able to reflect historic food security, poverty levels, and crop yields. Thus, we demonstrate that the reality of complex human adaptation decisions can best be described assuming bounded rational adaptive behavior; furthermore, an agent-based approach and the choice of adaptation theory matter when quantifying risk and estimating emergency aid needs.
Social networks and news outlets use recommender systems to distribute information and suggest news to their users. These algorithms are an attractive solution to deal with the massive amount of content on the web [6]. However, some organisations prioritise retention and maximisation of the number of access, which can be incompatible with values like the diversity of content and transparency. In recent years critics have warned of the dangers of algorithmic curation. The term filter bubbles, coined by the internet activist Eli Pariser [1], describes the outcome of pre-selected personalisation, where users are trapped in a bubble of similar contents. Pariser warns that it is not the user but the algorithm that curates and selects interesting topics to watch or read. Still, there is disagreement about the consequences for individuals and society. Research on the existence of filter bubbles is inconclusive. Fletcher in [5], claims that the term filter bubbles is an oversimplification of a much more complex system involving cognitive processes and social and technological interactions. And most of the empirical studies indicate that algorithmic recommendations have not locked large segments of the audience into bubbles [3] [6]. We built an agent-based simulation tool to study the dynamic and complex interplay between individual choices and social and technological interaction. The model includes different recommendation algorithms and a range of cognitive filters that can simulate different social network dynamics. The cognitive filters are based on the triple-filter bubble model [2]. The tool can be used to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions on recommender systems can mitigate adverse side effects like the presence of filter bubbles. The resulting tool is an open-source interactive web interface, allowing the simulation with different parameters such as users' characteristics, social networks and recommender system settings (see Fig. 1). The ABM model, implemented in Python Mesa [4], allows users to visualise, compare and analyse the consequence of combining various factors. Experiment results are similar to the ones published in the Triple Filter Bubble paper [2]. The novelty is the option to use a real collaborative-filter recommendation system and a new metric to measure the distance between users' innate and final opinions. We observed that slight modifications in the recommendation system, exposing items within the boundaries of users' latitude of acceptance, could increase content diversity.References 1. Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, New York, NY (2011) 2. Geschke, D., Lorenz, J., Holtz, P.: The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology (2019), 58, 129–149 3. Möller, J., Trilling, D., Helberger, N. , and van Es, B.: Do Not Blame It on the Algorithm: An Empirical Assessment of Multiple Recommender Systems and Their Impact on Content Diversity. Information, Communication and Society 21, no. 7 (2018): 959–77 4. Mesa: Agent-based modeling in Python, https://mesa.readthedocs.io/. Last accessed 2 Sep 2022 5. Fletcher, R.: The truth behind filter bubbles: Bursting some myths. Digital News Report - Reuters Institute (2020). https://reutersinstitute.politics.ox.ac.uk/news/truth-behind-filter-bubblesbursting-some-myths. Last accessed 2 Sep 2022 6. Haim, M., Graefe, A, Brosius, H: Burst of the Filter Bubble?: Effects of Personalization on the Diversity of Google News. Digital Journalism 6, no. 3 (2018): 330–43.
Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.