Agent-based modeling (ABM) is a widely used method for evaluating demand response (DR) strategies. To comprehensively assess the impact of DR strategies on a district cooling system, the integration of building managers’ DR behavior is essential. However, most ABM studies focus on technical optimization while overlooking the behavioral factors that may exist in building managers’ decision-making processes. To address this gap, this paper introduces an agent-based model using the belief-desire-intention (BDI) framework to simulate building managers’ air-conditioning setpoint adjustment behavior under DR, integrating the reasoning capabilities and irrational behavior factors.
MULTIFILE
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
DOCUMENT
This paper describes an agent-based software infrastructure for agile industrial production. This production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of different products in parallel. The multi-agent-based underlying systems uses two kinds of agents: an agent representing the product and an agent representing the equiplet.
MULTIFILE
In recent years, there have been significant changes in weather patterns, mainly caused by sharp increases in temperature, increases in carbon dioxide, and fluctuations in precipitation levels, negatively impacting agricultural production. Agricultural systems are characterized by being vulnerable to the variation of biophysical and socioeconomic factors involved in the development of agricultural activities. Agent-based models (ABMs) enable the study, analysis, and management of ecosystems through their ability to represent networks and their spatial nature. In this research, an ABM is developed to evaluate the behavior and determine the vulnerability in the sugarcane agricultural system; allowing the capitalization of knowledge through characteristics such as social ability and autonomy of the modeled agents through fuzzy logic and system dynamics. The methodol-ogy used includes information networks for a dynamic assessment of agricultural risk modeled by time series, system dynamics, uncertain parameters, and experience; which are developed in three stages: vulnerability indicators, crop vulnerability, and total system vulnerability. The development of ABM, a greater impact on the environmental contingency is noted due to the increase in greenhouse gas emissions and the exponential increase in extreme meteorological phenomena threatening the cultivation of sugarcane, making the agricultural sector more vulnerable and reducing the yield of the harvest.
DOCUMENT
In Eastern Africa, increasing climate variability and changing socioeconomic conditions are exacerbating the frequency and intensity of drought disasters. Droughts pose a severe threat to food security in this region, which is characterized by a large dependency on smallholder rain-fed agriculture and a low level of technological development in the food production systems. Future drought risk will be determined by the adaptation choices made by farmers, yet few drought risk models … incorporate adaptive behavior in the estimation of drought risk. Here, we present an innovative dynamic drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation decisions and the subsequent adoption of measures, and how this affects drought risk for agricultural production. ADOPT combines socio-hydrological and agent-based modeling approaches by coupling the FAO crop model AquacropOS with a behavioral model capable of simulating different adaptive behavioral theories. In this paper, we compare the protection motivation theory, which describes bounded rationality, with a business-as-usual and an economic rational adaptive behavior. The inclusion of these scenarios serves to evaluate and compare the effect of different assumptions about adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected from 250 households in the Kitui region and discussions with local decision-makers. The results show that estimations of drought risk and the need for emergency food aid can be improved using an agent-based approach: we show that ignoring individual household characteristics leads to an underestimation of food-aid needs. Moreover, we show that the bounded rational scenario is better able to reflect historic food security, poverty levels, and crop yields. Thus, we demonstrate that the reality of complex human adaptation decisions can best be described assuming bounded rational adaptive behavior; furthermore, an agent-based approach and the choice of adaptation theory matter when quantifying risk and estimating emergency aid needs.
MULTIFILE
Author supplied: A manufacturing process can be described by a sequence or combination of production steps. Based on this approach a manufacturing system has been developed that is capable to produce several different products in parallel. A batch size of one unit is possible and the production is pull-driven. The manufacturing system is based on agent technology and a special so-called product agent collects information about the assembly process. This agent will be connected to the actual product and can guide the disassembly process at the end of the products life. The agent will show the inverse steps to be taken to take a product apart. This approach can be used in the agent based manufacturing process described in this paper but the concept can also be used for other manufacturing systems. The paper discusses the possibilities as well as the restrictions of the method proposed here.
DOCUMENT
Industrial Symbiosis Networks (ISNs) consist of firms that exchange residual materials and energy locally, in order to gain economic, environmental and/or social advantages. In practice, ISNs regularly fail when partners leave and the recovery of residual streams ends. Regarding the current societal need for a shift towards sustainability, it is undesirable that ISNs should fail. Failures of ISNs may be caused by actor behaviour that leads to unanticipated economic losses. In this paper, we explore the effect of these behaviours on ISN robustness by using an agent-based model (ABM). The constructed model is based on insights from both literature and participatory modelling in three real-world cases. It simulates the implementation of synergies for local waste exchange and compost production. The Theory of Planned Behaviour (TPB) was used to model agent behaviour in time-dependent bilateral negotiations and synergy evaluation processes. We explored model behaviour with and without TPB logic across a range of possible TPB input variables. The simulation results show how the modelled planned behaviour affects the cash flow outcomes of the social agents and the robustness of the network. The study contributes to the theoretical development of industrial symbiosis research by providing a quantitative model of all ISN implementation stages, in which various behavioural patterns of entrepreneurs are included. It also contributes to practice by offering insights on how network dynamics and robustness outcomes are not only related to context and ISN design, but also to actor behaviour.
DOCUMENT
Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.
DOCUMENT
Social networks and news outlets use recommender systems to distribute information and suggest news to their users. These algorithms are an attractive solution to deal with the massive amount of content on the web [6]. However, some organisations prioritise retention and maximisation of the number of access, which can be incompatible with values like the diversity of content and transparency. In recent years critics have warned of the dangers of algorithmic curation. The term filter bubbles, coined by the internet activist Eli Pariser [1], describes the outcome of pre-selected personalisation, where users are trapped in a bubble of similar contents. Pariser warns that it is not the user but the algorithm that curates and selects interesting topics to watch or read. Still, there is disagreement about the consequences for individuals and society. Research on the existence of filter bubbles is inconclusive. Fletcher in [5], claims that the term filter bubbles is an oversimplification of a much more complex system involving cognitive processes and social and technological interactions. And most of the empirical studies indicate that algorithmic recommendations have not locked large segments of the audience into bubbles [3] [6]. We built an agent-based simulation tool to study the dynamic and complex interplay between individual choices and social and technological interaction. The model includes different recommendation algorithms and a range of cognitive filters that can simulate different social network dynamics. The cognitive filters are based on the triple-filter bubble model [2]. The tool can be used to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions on recommender systems can mitigate adverse side effects like the presence of filter bubbles. The resulting tool is an open-source interactive web interface, allowing the simulation with different parameters such as users' characteristics, social networks and recommender system settings (see Fig. 1). The ABM model, implemented in Python Mesa [4], allows users to visualise, compare and analyse the consequence of combining various factors. Experiment results are similar to the ones published in the Triple Filter Bubble paper [2]. The novelty is the option to use a real collaborative-filter recommendation system and a new metric to measure the distance between users' innate and final opinions. We observed that slight modifications in the recommendation system, exposing items within the boundaries of users' latitude of acceptance, could increase content diversity.References 1. Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, New York, NY (2011) 2. Geschke, D., Lorenz, J., Holtz, P.: The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology (2019), 58, 129–149 3. Möller, J., Trilling, D., Helberger, N. , and van Es, B.: Do Not Blame It on the Algorithm: An Empirical Assessment of Multiple Recommender Systems and Their Impact on Content Diversity. Information, Communication and Society 21, no. 7 (2018): 959–77 4. Mesa: Agent-based modeling in Python, https://mesa.readthedocs.io/. Last accessed 2 Sep 2022 5. Fletcher, R.: The truth behind filter bubbles: Bursting some myths. Digital News Report - Reuters Institute (2020). https://reutersinstitute.politics.ox.ac.uk/news/truth-behind-filter-bubblesbursting-some-myths. Last accessed 2 Sep 2022 6. Haim, M., Graefe, A, Brosius, H: Burst of the Filter Bubble?: Effects of Personalization on the Diversity of Google News. Digital Journalism 6, no. 3 (2018): 330–43.
MULTIFILE
Waste separation at companies is considered a priority to achieve a circular and sustainable society. This research explores behaviour change poli-cies for separating the organic fraction of municipal solid waste (OFMSW) at Small and Medium Enterprises (SMEs), particularly in cities. At SMEs, co-work-ers are responsible for waste disposal. Therefore, their behavioural intention to-wards pro-environmental action plays a major role. In this study, we have used agent-based modelling and simulation to explore the waste behaviour of the ac-tors in the system. The models were co-created in participatory workshops, sur-veys and interviews with stakeholders, domain experts and relevant actors. Ad-ditionally, we co-created and tested practical social and technical interventions with the model. We used the collaborative modelling method Lange reported to conceptualise, implement, test and validate the models. Five policies that affect waste separation behaviour were included in the model. The model and simula-tion results were cross-validated with the help of a literature study. The results were validated through experts and historical data to sketch a generalisable idea of networks with similar characteristics. These results indicate that combinations of behaviour profiles and certain policy interventions correlate with waste sepa-ration rates. In addition, individual waste separation policies are often limitedly capable of changing the behaviour in the system. The study also shows that the intention of co-workers concerning environmental behaviour can significantly impact waste separation rates. Future work will include the role of households, policies supporting separating multiple waste types, and the effect of waste sep-aration on various R-strategies.
DOCUMENT