1. Purpose of the ResearchThe research aims at developing a concept of operations (ConOps) that could connect aviation and all existing and future transport modes into an overall efficient transport network. Such ConOps should provide future passengers with a rapid and seamless travel experience.2. Research design, Methodology or ApproachThis paper describes a ConOps based on an ATM (Air Traffic Management) for a holistic traffic management system. For this purpose, the influences of quality management systems and other organizational facilities on the quality of passenger travel were examined. Various management systems like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems have been integrated.3. Expected research findingsThe ConOps is intended to pave the way to cross-modal traffic management, in which the preferences of the travellers have a high priority. The first results show that the needs of the passengers can only be met in advance, and the traffic resources can only be used economically through close cooperation and coordination of these management systems and applications with regard to possible synergies and interactions.4. Summary of the originality/contributionTo develop these ConOps, general and traffic management systems next to basic principles of quality management were researched in the literature, which could be summarized in a Total Traffic Management System (TTM). The ATM experience served as a model example. The ConOps can be used as a basis to build a previously non-existing TTM that can be used to manage the future of travelling and future transport modes.
MULTIFILE
Paris Charles de Gaulle Airport was the second European airport in terms of traffic in 2019, having transported 76.2 million passengers. Its large infrastructures include four runways, a large taxiway network, and 298 aircraft parking stands (131 contact) among three terminals. With the current pandemic in place, the European air traffic network has declined by −65% flights when compared with 2019 traffic (pre-COVID-19), having a severe negative impact on the aviation industry. More and more often taxiways and runways are used as parking spaces for aircraft as consequence of the drastic decrease in air traffic. Furthermore, due to safety reasons, passenger terminals at many airports have been partially closed. In this work we want to study the effect of the reduction in the physical facilities at airports on airspace and airport capacity, especially in the Terminal Manoeuvring Area (TMA) airspace, and in the airport ground side. We have developed a methodology that considers rare events such as the current pandemic, and evaluates reduced access to airport facilities, considers air traffic management restrictions and evaluates the capacity of airport ground side and airspace. We built scenarios based on real public information on the current use of the airport facilities of Paris Charles de Gaulle Airport and conducted different experiments based on current and hypothetical traffic recovery scenarios. An already known optimization metaheuristic was implemented for optimizing the traffic with the aim of avoiding airspace conflicts and avoiding capacity overloads on the ground side. The results show that the main bottleneck of the system is the terminal capacity, as it starts to become congested even at low traffic (35% of 2019 traffic). When the traffic starts to increase, a ground delay strategy is effective for mitigating airspace conflicts; however, it reveals the need for additional runways
DOCUMENT
Airport capacity has become a constraint in the air transportation networks, due to the growth of air traffic demand and the lack of resources able to accommodate this demand. This paper presents the algorithmic implementations of a decision support system for making a more efficient use of the airspace and ground capacity. The system would be able to provide support for air traffic controllers in handling large amount of flights while reducing to a minimum the potential conflicts. In this framework, airspace together with ground airport operations are considered. Conflicts are defined as separation minima violation between aircraft for what concerns airspace and runways, and as capacity overloads for taxiway network and terminals. The methodology proposed in this work consists of an iterative approach that couples optimization and simulation to find solutions that are resilient to perturbations due to the uncertainty present in different phases of the arrival and departure process. An optimization model was employed to find a (sub)optimal solution while a discrete event-based simulation model evaluated the objective function. By coupling simulation with optimization, we generate more robust solutions resilient to variability in the operations, this is supported by a case study of Paris Charles de Gaulle Airport.
DOCUMENT
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
DOCUMENT
The project X-TEAM D2D (extended ATM for door-to-door travel) has been funded by SESAR JU in the framework of the research activities devoted to the investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of the door-to-door (D2D) travel concept. The project defines a concept for the seamless integration of ATM and Air Transport into an intermodal network, including other available transportation means, such as surface and waterways, to contribute to the 4 h door-to-door connectivity targeted by the European Commission in the ACARE SRIA FlightPath 2050 goals. In particular, the project focused on the design of a concept of operations for urban and extended urban (up to regional) integrated mobility, taking into account the evolution of transportation and passengers service scenarios for the next decades, according to baseline (2025), intermediate (2035) and final target (2050) time horizons. The designed ConOps encompassed both the transportation platforms integration concepts and the innovative seamless Mobility as a Service, integrating emerging technologies, such as Urban Air Mobility (e.g., electric vertical take-off and landing vehicles) and new mobility forms (e.g., micromobility vehicles) into the intermodal traffic network, including Air Traffic Management (ATM) and Unmanned Traffic Management (UTM). The developed concept has been evaluated against existing KPAs and KPIs, implementing both qualitative and quantitative performance assessment approaches, while also considering specific performance metrics related to transport integration efficiency from the passenger point of view, being the proposed solution designed to be centered around the passenger needs. The aim of this paper is to provide a description of the activities carried out in the project and to present at high level the related outcomes.
DOCUMENT
PurposeThis study aims to identify variability in aviation operators in order to gain greater understanding of the changes in aviation professional groups. Research has commonly addressed human factors and automation in broad categories according to a group’s function (e.g., pilots, air traffic controllers [ATCOs], engineers). Accordingly, pilots and Air Traffic Controls (ATCOs) have been treated as homogeneous groups with a set of characteristics. Currently, critical themes of human performance in light of systems’ developments place the emphasis on quality training for improved situational awareness (SA), decision-making and cognitive load.Design/methodology/approachAs key solutions centre on the increased understanding and preparedness of operators through quality training, the authors deploy an iterative mixed methodology to reveal generational changes of pilots and ATCOs. In total, 46 participants were included in the qualitative instrument and 70 in the quantitative one. Preceding their triangulation, the qualitative data were analysed using NVivo and the quantitative analysis was aided through descriptive statistics.FindingsThe results show that there is a generational gap between old and new generations of operators. Although positive views on advanced systems are being expressed, concerns about cognitive capabilities in the new systems, training and skills gaps, workload and role implications are presented.Practical implicationsThe practical implications of this study extend to different profiles of operators that collaborate either directly or indirectly and that are critical to aviation safety. Specific implications are targeted on automation complacency, bias and managing information load, and training aspects where quality training can be aided by better understanding the occupational transitions under advanced systems.Originality/valueIn this paper, the authors aimed to understand the changing nature of the operators’ profession within the advanced technological context, and the perceptions and performance-shaping factors of pilots and ATCOs to define the generational changes.
DOCUMENT
Risk management is considered as the core process of an effective safety management system for identifying hazards and assessing risks. However, recent fatal hull loss accidents appear to have resulted from a combination of factors, none of which can alone cause an accident or even a serious incident. Therefore, traditional safety risk assessment processes, risk matrices, hazard logs and conventional risk management methodologies that mainly address individual risks, in some cases remained less effective in preventing major accidents that resulted from cumulative risks. Consequently, air operators have the need not only to proactively identify the ‘initial’ and the ‘residual’ risk of a hazard, but also to recognize the ‘current’ or ‘actual’ risk state of their system and to take the necessary mitigation actions for preventing an accident or a serious incident that may result from a combination of factors. The aim of this paper is to present and explain the concept of Dynamic Risk Management Dashboards (DRMDs), a tool which is a combined, real-time basis, a cross-departmental effort for managing risks resulting from a combination of factors. DRMD could concurrently examine and visualize the actual risk state of an aerodrome, an aircraft, an aircrew or an air traffic route based on a set of pre-defined Risk Acceptance Criteria that have been developed and tailored by each operator. The DRMDs have been implemented and evaluated by the safety department of a large military aviation organization as a proactive safety tool that complements the existing risk management process. Anecdotal results after a six-month trial period showed that DRMD assist decision makers in identifying the cumulative risks of particular missions and effectively in responding to unacceptable risks before authorizing or dispatching a particular flight.
DOCUMENT
Crew resource management (CRM) training for flight crews is widespread and has been credited with improving aviation safety. As other industries have adopted CRM, they have interpreted CRM in different ways. We sought to understand how industries have adopted CRM, regarding its conceptualisation and evaluation. For this, we conducted a systematic review of CRM studies in theMaritime, Nuclear Power, Oil and Gas, and Air Traffic Control industries. We searched three electronic databases (Web of Science, Science Direct, Scopus) and CRM reviews for papers. We analysed these papers on their goals, scope, levers of change, and evaluation. To synthesise, we compared the analysis results across industries. We found that most CRM programs have the broad goals of improving safety and efficiency. However, there are differences in the scope and levers of change between programs, both within and between industries. Most evaluative studies suffer from methodological weaknesses, and the evaluation does not align with how studies conceptualise CRM. These results challenge the assumption that there is a clear link between CRM training and enhanced safety in the analysed industries. Future CRM research needs to provide a clear conceptualisation—how CRM is expected to improve safety—and select evaluation measures consistent with this.
DOCUMENT
In the framework of the research activities supported by SESAR JU, dedicated research stream is devoted to investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of Door-to-Door (D2D) travel concept. In this framework, the project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU under the call SESAR-ER4-10-2019: ATM Role in Intermodal Transport, with Grant Agreement n. 891061. The project aims defining, developing and initially validating a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe, in compliance with the target assigned by the ACARE SRIA FlightPath 2050 goals. The project is focused on the consideration of ConOps for ATM and air transport integration in intermodal transport network serving urban and extended urban (up to regional level) mobility, taking into account the transportation and passengers service scenarios envisaged for the next decades, according to baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the outcomes of the first phase of the project activities, aimed to provide the initial definition (concept outline) of the proposed overall ConOps are illustrated, emphasizing the specific activities that have been carried out up to date and the related achievements. In addition, an outlook is provided in the paper on the next project activities, expected to be carried out towards the conclusion of the studies and the validation, by means of dedicated numerical simulation campaigns, of the proposed ConOps.
DOCUMENT
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE