The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
DOCUMENT
The project X-TEAM D2D (extended ATM for door-to-door travel) has been funded by SESAR JU in the framework of the research activities devoted to the investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of the door-to-door (D2D) travel concept. The project defines a concept for the seamless integration of ATM and Air Transport into an intermodal network, including other available transportation means, such as surface and waterways, to contribute to the 4 h door-to-door connectivity targeted by the European Commission in the ACARE SRIA FlightPath 2050 goals. In particular, the project focused on the design of a concept of operations for urban and extended urban (up to regional) integrated mobility, taking into account the evolution of transportation and passengers service scenarios for the next decades, according to baseline (2025), intermediate (2035) and final target (2050) time horizons. The designed ConOps encompassed both the transportation platforms integration concepts and the innovative seamless Mobility as a Service, integrating emerging technologies, such as Urban Air Mobility (e.g., electric vertical take-off and landing vehicles) and new mobility forms (e.g., micromobility vehicles) into the intermodal traffic network, including Air Traffic Management (ATM) and Unmanned Traffic Management (UTM). The developed concept has been evaluated against existing KPAs and KPIs, implementing both qualitative and quantitative performance assessment approaches, while also considering specific performance metrics related to transport integration efficiency from the passenger point of view, being the proposed solution designed to be centered around the passenger needs. The aim of this paper is to provide a description of the activities carried out in the project and to present at high level the related outcomes.
DOCUMENT
Sleep quality and maintenance of the optimal cognitive functioning is of crucial importance for aviation safety. Fatigue Risk Management (FRM) enables the operator to achieve the objectives set in their safety and FRM policies. As in any other risk management cycle, the FRM value can be realized by deploying suitable tools that aid robust decision-making. For the purposes of our article, we focus on fatigue hazard identification to explore the possible developments forward through the enhancement of objective tools in air transport operators. To this end we compare subjective and objective tools that could be employed by an FRM system. Specifically, we focus on an exploratory survey on 120 pilots and the analysis of 250 fatigue reports that are compared with objective fatigue assessment based on the polysomnographic (PSG) and neurocognitive assessment of three experimental cases. We highlight the significance of predictive objective tools that should be deployed by contemporary FRM models. We also report the need for utilization of scientific-based tools for predictive FRM, in which objective sleep quality and neurocognitive assessment should be the core aspect. We note the period of restructuring ahead as an opportunity for operators to rethink and restructure their FRM.
DOCUMENT
In the framework of the research activities supported by SESAR JU, dedicated research stream is devoted to investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of Door-to-Door (D2D) travel concept. In this framework, the project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU under the call SESAR-ER4-10-2019: ATM Role in Intermodal Transport, with Grant Agreement n. 891061. The project aims defining, developing and initially validating a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe, in compliance with the target assigned by the ACARE SRIA FlightPath 2050 goals. The project is focused on the consideration of ConOps for ATM and air transport integration in intermodal transport network serving urban and extended urban (up to regional level) mobility, taking into account the transportation and passengers service scenarios envisaged for the next decades, according to baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the outcomes of the first phase of the project activities, aimed to provide the initial definition (concept outline) of the proposed overall ConOps are illustrated, emphasizing the specific activities that have been carried out up to date and the related achievements. In addition, an outlook is provided in the paper on the next project activities, expected to be carried out towards the conclusion of the studies and the validation, by means of dedicated numerical simulation campaigns, of the proposed ConOps.
DOCUMENT
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
DOCUMENT
1. Purpose of the ResearchThe research aims at developing a concept of operations (ConOps) that could connect aviation and all existing and future transport modes into an overall efficient transport network. Such ConOps should provide future passengers with a rapid and seamless travel experience.2. Research design, Methodology or ApproachThis paper describes a ConOps based on an ATM (Air Traffic Management) for a holistic traffic management system. For this purpose, the influences of quality management systems and other organizational facilities on the quality of passenger travel were examined. Various management systems like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems have been integrated.3. Expected research findingsThe ConOps is intended to pave the way to cross-modal traffic management, in which the preferences of the travellers have a high priority. The first results show that the needs of the passengers can only be met in advance, and the traffic resources can only be used economically through close cooperation and coordination of these management systems and applications with regard to possible synergies and interactions.4. Summary of the originality/contributionTo develop these ConOps, general and traffic management systems next to basic principles of quality management were researched in the literature, which could be summarized in a Total Traffic Management System (TTM). The ATM experience served as a model example. The ConOps can be used as a basis to build a previously non-existing TTM that can be used to manage the future of travelling and future transport modes.
MULTIFILE
Abstract: Last few years the hindrance, accidents, pollution and other negative side effects of construction projects and namely construction transport have become an issue particularly in urban areas across Europe such as in London, and in the Netherlands as well, including the cities of Utrecht, Rotterdam and Amsterdam. Municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular and accessibility of older and polluting vehicles. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. Contractors and third party logistics providers have started applying consolidation centres. These developments have shown considerable reductions of number of vehicles needed to deliver goods and to transport workers to site. In addition these developments have led to increased transport efficiency, labour productivity and cost reductions on site as well as down the supply chain. Besides these developments have led to increased innovations in the field of logistics planning software, use of ICT , and handling hardware and equipment. This paper gives an overview of current developments and applications in the field of construction logistics in the Netherlands, and in a few project cases in particular. Those cases are underway as part of an ongoing applied research project and studied by using an ethnographic participative action research approach. The case findings and project results show initial advantages how the projects, the firms involved and the environment can profit from the advancement of logistics management leading to reduced environmental impact and increased efficiencies of construction transport.
DOCUMENT
This paper reviews the existing literature concerned with air passengers with specific access requirements, often referred as passengers with disabilities (PwDs) or passengers with reduced mobility (PRMs). While accessibility in air transport is an emerging field of research, the literature lacks a more in-depth understanding of the barriers that air passengers face, which can guide future research and help practitioners in improving the services to this passenger segment. To this end, we conducted a systematic review of 50 peer-reviewed articles to explore how these challenges have been addressed in existing literature. The analysis expanded upon the established primary barrier categories (architectural, transport, communication and information, attitudinal, and technological). Within these categories, novel sub-groups of barriers were identified and proposed. The analysis further revealed the most suggested solutions to overcoming those barriers: i) legal obligations and standard operational procedures; ii) improving airport facilities and services; iii) digitalization of operations and services; iv) recommendations for improving cabin safety and accessibility; and v) training for airport and airline staff. This study emphasizes the importance of gaining a thorough understanding of the challenges faced by PwDs and calls for more collaborative efforts from various stakeholders to enhance the accessibility and inclusivity of air travel.
LINK
Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked. Another stream of technological research and development aims at reducing pollution and will reduce emissions per passenger-kilometer, but suffers from several rebound effects. The final impact on energy consumption depends on the strength of the positive and negative feedback in the technology system of tourism transport. However, as the core tourism industry including tour operators, travel agencies, and, accommodation has a strong link with air transport, it is unlikely that technological development without strong social and political control will result in delivering the emission reductions required for avoiding dangerous climate change.
DOCUMENT
Airport operations are undergoing significant change, having to meet pandemic requirements in addition to intrinsic security requirements. Although air traffic has declined massively, airports are still the critical hubs of the air transport network. The new restrictions due to the COVID-19 pandemic pose new challenges for airport operators in redesigning airport terminals and managing passenger flows. To evaluate the impact of COVID-19 restrictions, we implement a reference airport environment. In this Airport in the Lab environment we will demonstrate the operational consequences derived from the new operational requirements. In addition, countermeasures to mitigate any negative impacts of these changes are tested. The results highlight emerging issues that the airport will most likely face and possible solutions. Finally, we could apply the findings and lessons learned from our testing at our reference airport to a real airport.
DOCUMENT